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Abstract

US corporate concentration has been persistently rising over the past century and productivity

growth has been concurrently declining. This paper builds a continuous-time Schumpeterian

growth model in which a uniform decline in research efficiency increases the relative growth

of leading firms compared to laggards and endogenously thickens the Pareto tail of firms’

productivity distribution. With a demand system featuring realistic variable demand elasticities,

the model explains a large part of the dynamics of firms’ productivity, corporate concentration,

markup, labor share, R&D cost, entry and exit rates, as well as job creation and destruction

rates in the US since the 1980s. The model can also accommodate increasing concentration with

a stable markup and labor share in the pre-1980 period by accounting for the role of economic

integration.
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1 Introduction

US corporate concentration has been rising since at least the 1930s (Figure 1a, Kwon et al. (2022)).

While many explanations have been proposed to account for this phenomenon since the 1980s,

its strikingly long-run nature remains a puzzle. Moreover, rising concentration takes a specific

form of fattening Pareto tail as documented in Kwon et al. (2022) and Chen (2022): the share of

top 0.1% firms within top 1% firms, as well as top 1% firms within top 10% firms, has increased

over time. That is, mega firms have pulled ahead relative to large firms. Understanding the rise

of concentration is not only important for its own sake, but may also shed light on other major

issues, such as the rise of market power and the decline of labor share since the 1980s.1 Such an

endeavor is, however, challenging: while we observe an increase in corporate concentration since

the 1930s, markups were roughly stable until the 1980s and have increased since then in US data.2

Corroborating the stable market power before the 1980s is the stable labor share known as one of

Kaldor’s facts (Kaldor (1961)). How can we reconcile the fattening tail of firm size distribution

with the stable market power until the 1980s?

This paper argues that declining research productivity, which has been identified as a widespread

feature across scientific fields or industrial classifications,3 can explain all these facts. According to

Gordon (2016) and Nordhaus (2021), US Total Factor Productivity (TFP) growth peaked in the

1930s and 1940s with an annual rate of around 2.5%, then subsequently declined gradually to near

0 today (Figure 1b). Against the backdrop of declining TFP growth is not a decline in research

input but rather a tremendous increase: since the 1930s, research effort has risen by a factor of

23, an average annual growth rate of 4.3%. Following the semi-endogenous growth literature such

as Jones (1995), Bloom et al. (2020) defines research productivity as the ratio of TFP growth to

R&D input, allowing for possible decreasing returns to scale in the production function for ideas.

Research productivity has fallen by a factor of 19 since the 1930s with an annual growth rate of

-3.67% (Figure 1b).4 As Bloom et al. (2020) puts it, “ideas are getting harder to find”.

To establish the link between increasing research difficulty and rising concentration, I build a

continuous-time Schumpeterian growth model which endogenizes the growth decisions of individual

firms and generates a productivity distribution with a Pareto tail. In the model, each firm can

1See Karabarbounis and Neiman (2014), Autor et al. (2020) and Kehrig and Vincent (2021) for the labor share,
and De Loecker et al. (2020) and Edmond et al. (2023) for markups. If demand elasticity decreases with firm size,
as assumed in standard macroeconomic models with heterogeneous markups (e.g. Atkeson and Burstein (2008) in
an oligopolistic competition and Melitz and Ottaviano (2008) in a monopolistic competition), then understanding
higher concentration paves the way for understanding higher market power.

2See Edmond et al. (2023) for cost-weighted markup and De Loecker et al. (2020) for sales-weighted markup between
1950 and 1980.

3See Gordon (2016), Bloom et al. (2020) and Park et al. (2023).
4To be consistent with my model, I assume decreasing returns to scale in the idea production function with 0.5
elasticity of growth with respect to research input. In the baseline setting of Bloom et al. (2020) with constant
returns to scale of the idea production function, research productivity decreases by a factor of 41 since the 1930s
with an annual growth rate of -5.1%.
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(a) Corporate Concentration (b) Decadal TFP Growth and Research Productivity

Figure 1: US secular trends

Notes: Corporate concentration is the share of top 1% firms in terms of assets, receipts (sales) and net
income from Kwon et al. (2022). TFP growth comes from Gordon (2016) and the alternative measure from
Nordhaus (2021). Research productivity is measured using the methodology of Bloom et al. (2020) with
decreasing returns to the idea production function.

conduct step-by-step innovation on a stand-alone basis to improve its productivity.5 According

to firm-level evidence in Bloom et al. (2020), firms find it more difficult to improve upon more

advanced technology. Thus in a cross section of firms, technological laggards grow more quickly

than leaders. Over time, research becomes more difficult uniformly across all firms: knowledge

becomes more difficult with economic growth, as “standing on the shoulders of giants” is hard

(Jones (2009)). This first of all decreases the growth of all firms so that the aggregate growth

rate declines. Second, the higher growth of laggards and their reliance on growth to catch up with

leaders implies that they are particularly hurt by harder research. This increases the relative growth

of leaders versus laggards and allows the former to stretch further into the right tail, resulting in

a fatter tail of productivity distribution and higher concentration. Under the assumptions of the

model, I demonstrate that there is a one-to-one correspondence between TFP growth rate and

the Pareto tail index of firm size distribution, so that the secular rise of corporate concentration

manifests the secular decline of TFP growth in the data. Moreover, even though growth is negatively

correlated with the level of concentration, it is positively correlated with the speed of concentration

increase. The latter is another empirical regularity documented by Kwon et al. (2022). In the

model, higher TFP growth translates into a faster increase in research difficulty during a fixed

period of time following the semi-endogenous growth logic. Consequently, concentration increases

faster at higher levels of growth.

5In an extended model, a firm can also learn from more productive firms. See Section 8.
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It should be emphasized that the negative correlation between growth and concentration level

should not be understood as higher concentration causing lower growth, which is the emphasis

of the existing Schumpeterian growth literature (e.g. Aghion et al. (2005), Akcigit and Ates

(2021)), but rather as lower growth generating higher concentration. Both directions are present

in my model, as it describes jointly firms’ growth decisions based on profit incentives and hence

concentration, with the endogenous determination of the market structure based on growth.6 I use

the newly developed Mean Field Game methodology to solve the model and derive the productivity

distributions of firms. In the model, higher research difficulty reduces growth and hurts the dynamic

advantage of laggards, consequently increasing concentration. Instead of reducing growth, higher

concentration partly mitigates the impact of harder research and encourages growth by increasing

the Schumpeterian profits of innovation. Compared to the existing Schumpeterian literature, the

emphasis is now shifted from how market structure determines growth to how growth determines

market structure.

In addition to the productivity improvements discussed above, the model introduces idiosyncratic

productivity shocks (i.e. random growth) in order to generate Pareto-tailed distributions, like

many existing papers (e.g. Gabaix (1999), Gabaix et al. (2016)).7 There is entry and exit of firms.

Potential entrants enter the market by learning imperfectly from incumbents: when an entrant is

matched with an incumbent and learns from the latter, the entrant can jump to the productivity

level of the incumbent but also faces a positive probability of moving to some productivity below

it. Learning is imperfect as the probability of jumping to the incumbent is less than 1. The

specification can be seen as the continuous counterpart of the discrete case in König et al. (2016). I

take advantage of tools in the continuous setting to prove that the tail of the equilibrium distribution

is uniquely determined as long as learning is imperfect. Thus the model links growth to equilibrium

productivity distributions and concentration, without resorting to any additional assumption on the

initial productivity distribution.8

To study the implications of higher concentration on markups and labor share, I design a demand

system featuring variable demand elasticities and assume that firms compete monopolistically with

each other. The demand system is a special specification of the Kimball (1995) preferences and can

be seen as a counterpart in monopolistic competition of nested CES in oligopolistic competition

(Atkeson and Burstein (2008)). It retains key features of nested CES regarding demand elasticities,

pass-throughs and firm-size distributions, while eliminating the strategic interactions of oligopolistic

6Technically, the model couples a Hamilton-Jacobi-Bellman (HJB) equation with a Kolomogorov Forward (KF)
equation.

7Another commonly-used way of generating the Pareto tail is assuming an initial distribution with Pareto tail and
perfect learning to perpetuate that tail, e.g. Lucas and Moll (2014).

8Luttmer (2012) and Perla et al. (2021) assume the initial productivity distribution to be sufficiently light-tailed in
order to uniquely pin down the equilibrium Pareto tail. See Section 4.2.3 on why the assumption is needed in their
models and why imperfect learning makes such an assumption unnecessary.
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competition. This is necessary for the Mean Field Game methodology, as each firm is infinitesimal

in the case of monopolistic competition and does not exert a noticeable impact on the aggregate

economy on its own. Like a typical macroeconomic model in a static setting, more productive firms

are also larger and enjoy a higher market power. The fatter tail of the productivity distribution thus

reallocates market share towards firms with higher markups. Both the increase in markups and

the decrease in labor share mainly come from the between-firm reallocation component rather than

the within-firm component in an Olley-Pakes or Melitz-Palanec decomposition, as is consistent

with the empirical evidence (De Loecker et al. (2020), Autor et al. (2020)). The between-firm

component, however, can be largely compensated by the within-firm component if additional forces

other than harder research are at play. Before the 1980s, basic infrastructure projects such as

highways, airline facilities, etc. connecting different regions of the US (Gordon (2016)), as well as

deregulations such as the 1978 Airline Deregulation Act which removed market access restriction

across regions, motivates us to consider economic integration as another first-order economic force

during the pre-1980 period.9 Economic integration reduces markups and increases labor share

through the within-firm component as it brings more firms into competition with each other.10

The reallocation component from harder research is thus largely compensated by the within-firm

component of economic integration, and aggregate markup and labor share can remain roughly

stable while concentration increases with a fatter tail.11 The model can thus make sense of the

pre-1980 evidence.

Decker et al. (2020) has shown that declining job reallocation rates since the 1980s are due to

firms’ reduced sensitivity to idiosyncratic shocks and not the reduced volatility of these shocks.

The model is consistent with this evidence, as higher market power is a manifestation of lower

demand elasticity, and with lower elasticity the same idiosyncratic productivity shock translates

into lower job creation or job destruction. The exit rate declines for similar reasons due to reduced

reaction to productivity shocks, while the entry rate declines as research becomes more difficult.

The model is thus also consistent with diminished business dynamics.

Using sectoral-level data from the US since 1987, I find empirical evidence for the mechanism of

the model which links research productivity, market structure and business dynamism. Research

productivity, measured as TFP growth over R&D cost, is significantly negatively correlated with the

9Other examples of rising concentration but stable markup and labor share include European countries in the last
few decades. See Bighelli et al. (2023), Gutiérrez et al. (2022) and Bauer and Boussard (2020). Perhaps not
coincidentally, this is the era during which European countries are being integrated into the European Union, which
is a typical example of economic integration.

10The productivity distribution is Pareto at the right tail but log-concave in log productivity overall. According to
Autor et al. (2020), within-firm reduction in markup dominates between-firm reallocation towards firms with higher
markups when the number of firms increases. The net effect coming from static integration is thus a decrease in
markup due to the within-firm component. I thank Pascual Restrepo for pointing this out.

11When the productivity distribution is exactly Pareto, the sole force of economic integration without any change
in the productivity distribution can explain higher concentration with stable aggregate markup and labor share as
in Melitz and Ottaviano (2008), but cannot explain why higher concentration takes the form of a fattening Pareto
tail.
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market concentration and profitability of the largest firms in the sector, and positively correlated

with labor share and major indicators of business dynamism in the Business Dynamics Statistics

(BDS): job creation rate by entrants, total job creation rate, job destruction rate by death, total job

destruction rate, job reallocation rate, and the number of entrants/deaths over the total number of

establishments. To quantify the model, I calibrate the demand system to match the heterogeneous

labor shares across the establishment size distribution in the Census of Manufacturing. Other

parameters are structurally estimated to match key moments around 1980. I calibrate a 6.84-fold

decrease of research productivity for the 1980-2020 period using the methodology of Bloom et al.

(2020) with aggregate US data, and a decrease in interest rate from 0.0469 to 0.0109 during the same

period following Liu et al. (2022). Since the interest rate affects how a firm discounts future profits

in making their growth decision, a lower discount rate encourages growth and counteracts some of

the increase in research difficulty. This effect must be taken into account in order to evaluate the

model against historical evidence. Moreover, in a partial equilibrium, harder innovation leads to

lower R&D expenditure.12 The increase in R&D expenditure in conjunction with harder research

in the data needs to be understood in a setting where compensating forces, such as a lower interest

rate, mitigate the growth effects of harder research.13,14 Despite the pro-growth effect of a lower

interest rate and the Schumpeterian incentives provided by higher concentration, the large increase

in research difficulty dominates the landscape. The model can explain the major part of the changes

in US TFP growth, concentration, markup, labor share, entry rate, exit rate, job creation rate, job

destruction rate and job reallocation rate since the 1980s.

The above discussion leaves unanswered the crucial question of why research has become more

difficult. To be sure, this has not always been the case: TFP growth went up by 1.5% from the

1900s to 1930s and peaked in the 1930s and 1940s according to Gordon (2016) and Nordhaus (2021).

In Philippon (2022), productivity is best described as “additive” per historical era, meaning that

the growth rate declines during each era but can temporarily increase at some key moments. In the

Schumpeterian literature, this pattern of the rise and fall of growth is called the “Schumpeterian

Wave”.15 The high moments of waves could be due to the arrival and widespread adoption of

disruptive general-purpose technologies, such as electricity and internal combustion engine which

characterized the Second Industrial Revolution. For the era under study, the lack of disruptive

technologies has been extensively documented by the recent literature. Gordon (2016) provides an

12To see this, consider a simple but general case in which the cost of R&D is 1
2
αλs, where s > 1 and λ is the rate of

success to be optimally chosen. Denote V > 0 to be the benefit if λ is successfully realized. Then the optimal λ is
λ∗ = ( 2V

αs
)1/(s−1) and the R&D expenditure is ( 1

2
α)−1/(s−1)(V

s
)s/(s−1). The latter is decreasing in α, i.e. decreasing

in research difficulty in a partial equilibrium. If, however, compensating forces such as a lower interest rate make
the change of λ less than what is implied by the sole force of harder research, then R&D expenditure can increase
in a general equilibrium.

13In a standard consumption-based asset pricing model, the decrease in interest rate can be endogenized by a decrease
in growth rate with appropriate relative risk aversion.

14These compensating forces should also be expected to exist given the large increase in research difficulty, otherwise
the economic system seems too fragile.

15See Aghion and Howitt (1992) for a brief discussion.
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extraordinary historical account of the rise and fall of US economic growth since 1870s, emphasizing

the disruptiveness and broadness of the Second Industrial Revolution. Garcia-Macia et al. (2019)

demonstrates that most growth since the 1980s has resulted from incumbents’ innovations on

existing products. Park et al. (2023) shows a decline in the disruptiveness of patents and academic

papers over time, at least from the end of World War II. Nonetheless, the optimistic implication

is that faster growth is possible in the future, as long as fundamental advances in science and

technology can start another wave. Policies can be designed to stimulate R&D, particularly

fundamental and disruptive ones that have a wide scope of applicability. The contribution of

my paper is to analyze the effect of research productivity on the capabilities to innovate and the

market structure by studying the endogenous dynamics of firms’ productivity and size distributions.

Related Literature This paper first of all belongs to the Schumpeterian growth literature and

owes its inspiration to the seminal works of Aghion and Howitt (1992) and Aghion et al. (2001).

Compared to Aghion et al. (2001), this paper innovates by generating a well-defined productivity

distribution with Pareto tail.16 Such a distribution allows us to understand why market con-

centration has increased via the specific form of a fattening Pareto tail. It also allows us to

evaluate economic integration in the spirit of the international trade literature, and thus to study

dynamic growth effects and static market structure changes in a unified framework. The paper

shifts from the traditional Schumpeterian emphasis of how market structure determines growth to

how growth determines market structure. Akcigit and Ates (2021), in the spirit of the traditional

Schumpeterian literature, interprets lower growth since the 1980s through a change in market

structure, i.e. markets become more concentrated when the exogenous technological diffusion rate

decreases.17 In the present paper, lower growth is not due to higher concentration but to harder

research, while higher concentration actually has a pro-growth effect. Harder research hurts the

dynamic growth advantage of laggards and allows leaders to stretch out in relative terms. In this

sense, the emphasis is on how growth determines the market structure, with potential dramatic

implications for how anti-trust policies should be conducted.

Declining research productivity, the driving force in this paper, draws on fundamental insights of

the semi-endogenous growth literature, e.g. Jones (1995), Kortum (1997) and Segerstrom (1998).18

Bloom et al. (2020) provides recent empirical evidence based on micro data. Existing theoretical

frameworks typically assume a positive exogenous population growth which cancels out the effect

of harder research by the increasing number of researchers, and consequently maintains constant

16The baseline framework does generate a productivity gap distribution, but the productivity distribution dissipates
over time as innovation and diffusion intensities do not depend on sectoral productivity level. Acemoglu et al.
(2018) implicitly assumes harder innovation for more productive sectors and generates a stationary productivity
distribution, but the distribution is thin-tailed.

17However, a decrease in the technological diffusion rate also has a pro-growth effect for leaders, which is the standard
argument of intellectual property right protection. When Akcigit and Ates (2023) calibrates the model to the data,
the two forces compensate each other so that growth decreases little.

18See Jones (2022) for a review.
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productivity growth. When Jones (2002) brings the model to the data, however, less than 20% of

growth is explained by population growth. Thus I assume a fixed population except when I analyze

economic integration, and study the effect of declining research productivity on declining growth.

The long-run rise of US corporate concentration is based on the estimates of Kwon et al. (2022).

Chen (2022) supports the empirical evidence and shows in addition that concentration is positively

correlated with GDP per capita in a cross section of countries. Kwon et al. (2022) shows that

rising concentration in an industry aligns closely with investment intensity in R&D and information

technology, and interprets these investments as fixed costs so that increasing concentration is a result

of higher fixed costs. However, total R&D expenditure over GDP has never exceeded 3.5% in the

past century in the US.19 Such a small change in fixed costs is unlikely to match the large increase

in corporate concentration through the traditional sense of economies of scale, and cannot speak

to the flattening Pareto tail.20 The present paper concurs with Kwon et al. (2022) in that R&D

is the key for understanding increasing concentration, but interprets its effect through endogenous

growth which increases concentration via a change in the endogenous productivity distribution. Put

differently, instead of considering increasing returns to scale due to fixed costs, this paper emphasizes

increasing returns to scale of the production function when productivity can be changed in addition

to capital and labor. Such change has been one of the central pillars of endogenous growth models

(see Romer (1990) and Jones (2005)).21 Chen (2022) also takes a growth perspective on the

secular rise in concentration. While his paper focuses on the transitional dynamics when the initial

distribution is assumed to be lighter-tailed than the equilibrium distribution,22 my paper focuses

on the equilibrium distribution for each historical period and the transition is modelled as moving

from one equilibrium to another due to changes in research productivity.23 While concentration

increases and growth is constant in Chen (2022), in my paper increasing concentration is associated

with declining growth due to harder research.

The paper is also closely related to the vibrant literature on US growth, market power and business

19Total private investment in intellectual property products, which includes investment in IT, has never exceeded 5%
of GDP during the same period.

20In Melitz (2003), a higher fixed cost implies higher concentration but not a heavier tail of employment. In a
demand system with variable demand elasticities, a higher fixed cost may imply a lighter tail of employment, as
the productivity tail remains the same but demand elasticity is lower.

21Romer (1990) discusses how the non-rivalry of ideas implies increasing returns to scale of the production function
when the idea and rival inputs (such as production labor, human capital, etc.) are jointly considered. Conversely,
increasing returns to scale also implies non-rivalry of ideas. Suppose by contradiction that ideas are rival, then the
standard replication argument implies that the production function should exhibit constant returns to scale with
respect to idea and other rival inputs, which contradicts increasing returns to scale.

22Tail transition is fast in Chen (2022) as learning is perfect and targets only more productive firms. Consequently,
when the log-productivity distribution has a tail of order Ce−kx, successful learners with tail Cxe−kx are injected,
pushing the distribution towards a heavier tail.

23Thus the present paper compares different historical periods based on comparative statics, each period with a
balanced growth path solution. The transitional dynamics in this baseline model is too slow to match the data, as
explained by Luttmer (2011), Gabaix et al. (2016) and Jones and Kim (2018). Like these papers, different types of
firms can potentially be introduced in an extended model to speed up the transition to a reasonable scale.
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dynamism since the 1980s. Notable works on the theory side include Akcigit and Ates (2021,

2023) on technological diffusion, Aghion et al. (2023) and De Ridder (2019) on intangibles, and

Liu et al. (2022) on low interest rates. While each theory sheds light on a specific mechanism,

they face the common challenge of interpreting the long-run trend of declining growth and rising

concentration since the 1930s.24 Lower technological diffusion in Akcigit and Ates (2021, 2023) is

interpreted as a result of more stringent intellectual property right (IPR) enforcement. While this

could be the case since the 1980s, there is little evidence of the secular increase of IPR enforcement

since the 1930s. Even if the latter is true, its pro-growth effect on leaders largely compensates its

anti-growth effect from higher concentration in this type of model, making it difficult to speak to

the secular decline in growth.25 But my paper does concur with Akcigit and Ates (2021, 2023)

in that the technological diffusion rate, i.e. the incumbent learning rate in the extended model of

this paper, declines. The declining diffusion rate is now understood to be not due to institutional

reasons, but rather to increasing technological difficulty. Aghion et al. (2023) and De Ridder (2019)

assume ex ante differences in firms’ abilities to utilize intangibles such as IT. More IT-capable firms

can span their control with the arrival of IT, increasing concentration and depressing growth. IT

was not widespread before the 1980s, making its historical relevance limited. Despite this, my

paper’s mechanism is consistent with higher intangibles like these papers, as measured intangibles

predominantly consist of capitalized R&D expenditures (Hall et al. (2005), Bloom et al. (2013),

Peters and Taylor (2017) and Haskel and Westlake (2017)) and the R&D share of GDP increases

in my model. Liu et al. (2022) investigates the anti-growth effect of a lower interest rate when

the latter is close to 0 and if there is no quick catch-up of laggards. In the present paper, a lower

interest rate has a pro-growth effect, regardless of whether there is a quick catch-up for laggards or

not, and acts as a compensating force to mitigate the effects of harder research.26 Closest in spirit

to the present paper are Olmstead-Rumsey (2019) and Cavenaile et al. (2019). Olmstead-Rumsey

(2019) studies the decrease in innovativeness of all firms which corresponds to declining research

productivity in this paper, and Cavenaile et al. (2019) compares different mechanisms and argues

that harder research is likely to be the driver behind lower growth. Neither of these papers can

account for the increasing concentration of very top firms or accommodate different patterns of

concentration and market power across historical periods.

This paper is able to account for the key moments in the data including TFP growth (Gordon

(2016), Nordhaus (2021)), corporate concentration (Kwon et al. (2022)), markup (De Loecker

et al. (2020), Edmond et al. (2023)), labor share (Karabarbounis and Neiman (2014), Autor et al.

(2020), Kehrig and Vincent (2021)) and various business dynamism indicators (Decker et al. (2016),

24One long-run driver other than declining research productivity is declining population growth. Peters and Walsh
(2020) formalizes the idea that declining population growth can reduce business dynamism and growth, but its
effect on market power and labor share is limited.

25See also Aghion et al. (2001) for the non-monotonic relationship between aggregate growth and diffusion rate.
26Moreover, if equity cost is considered in addition to debt cost to form the Required Rate of Return on Capital
(RRRC) for discounting future profits, RRRC has always been above 10% since the 1980s according to Barkai
(2020).
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Decker et al. (2020)). It explains why market power and labor share may or may not change with

a flattening Pareto tail depending on economic integration and market structure. The model is

able to encompass and discuss some main drivers which have been put forward in the literature:

technological diffusion rate, intangibles, interest rate and innovativeness of R&D.27 In this sense,

my work attempts to resolve the double accounting issue in the literature and hopes to avoid

“explaining the labor share decline many times over” as advocated by Grossman and Oberfield

(2022).

Importantly, the framework takes advantage of the newly developed methodology of Mean Field

Game in the mathematical literature (e.g. Lasry and Lions (2007) and Lions (2006)). The

methodology has been adopted in economics by Achdou et al. (2022), Alvarez et al. (2022) and

Benhabib et al. (2021). Closest in spirit to my model is Benhabib et al. (2021), which generates a

stationary productivity distribution via the innovation and learning decisions of individual firms.

This paper differs by generating Pareto-tailed distributions and linking its flattening tail to lower

growth when ideas get harder to find. It also studies the implications for market power and labor

share with a demand system featuring variable demand elasticities.

Roadmap Section 2 presents empirical evidence on the relationships between research productivity

and various indicators of market structure and business dynamism. Section 3 develops a simple

model which illustrates the mechanism behind the long-run rise in concentration and decline in

growth. Section 4 constructs a full model with endogenous innovation, generates a travelling

wave solution of productivity distribution, and describes business dynamics with entry and exit.

The distribution reflects the dynamics of firm heterogeneity and market power in a monopolistic

competition with variable demand elasticities. Section 5 calibrates the model parameters based on

US data. When ideas get harder to find, Section 6 explores the implications for growth, market

structure and business dynamism through a comparative statics analysis. Section 7 reconciles

the earlier US experience of increasing concentration with a stable markup and labor share by

introducing economic integration alongside harder innovation. Section 8 extends the model by

introducing incumbent learning in addition to innovation, and shows the robustness of the results

under the alternative model. Section 9 concludes with a discussion of potential policy implications.

2 Empirical Evidence

I use US sectoral level data between 1987 and 2018 to show the correlations between research

productivity on the one hand, and TFP growth, indicators of market structure and business

dynamics on the other. There are 33 sectors in total, including 19 manufacturing sectors at

3-digit NAICS level and 14 non-manufacturing sectors at 2-digit NAICS level. I follow Bloom

27The relationship with other drivers is less clear, such as automation in Martinez (2021). Nevertheless, Martinez
(2021) emphasizes the key role of automation distribution in generating aggregate effects in the long run, which
resonates with the role of productivity distribution in the present paper.
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et al. (2020) and define research productivity as the ratio between TFP growth and the effective

number of researchers at the sectoral level, taking into account decreasing returns to scale of the

idea production function.28 The effective number of researchers is R&D expenditure deflated by

scientist wage which is proxied by average annual earnings for men with four or more years of

college education. R&D expenditure comes from the aggregation of firm-level R&D in Compustat

at the sectoral level.29 TFP growth comes from the KLEMS data of the US Bureau of Labor

Statistics (BLS) and Bureau of Economic Analysis (BEA).30 To remove the cyclical variations of

TFP growth in a business cycle, I divide the 1987-2018 history into four equal periods, each with

eight years. All variables are calculated as per period average. Such a division is also conceptually

reasonable as a change in “research productivity” only seems meaningful when a longer horizon is

involved.31. See Appendix A.1 for more details on the definition of research productivity.

Dependent variables are constructed to reflect the market structure and business dynamics. (1)

I construct an indicator of market concentration from Business Dynamics Statistics (BDS) which

reports employment by firm size category and sector. For each sector*period, market concentration

is defined as the employment share of firms with more than 5000 employees. (2) EBIT/Sales of the

largest four or eight firms by sector in Compustat is used to indicate the profitability of the largest

firms in the sector. (3) Sectoral labor shares come from KLEMS. (4) For business dynamics, I use

entry rate in terms of the number of establishments, entry rate in terms of job creation from birth,

total job creation rate, exit rate in terms of the number of establishments, exit rate in terms of job

destruction from death, total job destruction rate, and job reallocation rate, all from BDS.

For each dependent variable ys,t, where s stands for sector and t for period, I run the following

regression:

ys,t = β0 + β1 log(IdeaProds,t) + γt + ϵs,t,

where IdeaProds,t is the research productivity of the idea production function and γt is period fixed

effect. Standard errors are clustered at sectoral level. Table 1 shows the results for growth and

market structure indicators, and Table 2 for business dynamism indicators. Within-R2 reports

the R2 without fixed effects. Research productivity is significantly negatively correlated with

market concentration and profitability of the largest firms in a sector, and positively correlated

with labor share and all indicators of business dynamics. These empirical patterns, together with

the stylized facts in the introduction, are consistent with a model in which declining research

28The results remain robust with constant returns to scale of the idea production function (see Appendix A.2).
29Compustat covers public firms whose share among all firms varies across sectors and years. To alleviate the concern
about the R&D data coverage in Compustat, Appendix A.2 adjusts sectoral R&D by the employment share of
Compustat firms within each sector. The correlations remain robust after the adjustment.

30BEA treats R&D as intermediate input when calculating TFP and reports separately the contribution of R&D
to productivity. Following Bloom et al. (2020), this contribution is added back to TFP to be consistent with the
conceptual framework of endogenous growth.

31Using divisions other than eight years per period, as long as each period is not too short so that cyclical variations can
be removed, and not too long so that there are sufficient data points, generates similar results (See Appendix A.2)
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productivity decreases growth and increases market concentration. Higher market concentration

manifests itself via higher market power and a lower labor share in a demand system with variable

demand elasticities. Job reallocation decreases as firms react less to idiosyncratic shocks due

to lower demand elasticities. The next section presents a simple model focusing on growth and

concentration, and Section 4 presents a full model consistent with all the empirical findings.

(1) (2) (3) (4) (5)
Growth Concentration Ebit/Sales 4 Ebit/Sales 8 Labor Share

log(IdeaProd) 0.472∗∗∗ -4.594∗∗∗ -0.723∗ -0.817∗ 2.664∗∗∗

(0.0853) (1.526) (0.414) (0.432) (0.927)

N 132 132 132 132 132
Within R2 0.187 0.147 0.0547 0.0729 0.0877
Period Fixed Effect Yes Yes Yes Yes Yes

Notes: Concentration is the employment share of firms with more than 5000 employees from BDS. Top
4(8) profit is the EBIT/Sales ratio of the largest 4(8) firms in the sector based on Compustat. Labor share
comes from KLEMS. Intercepts are omitted. Standard errors are clustered at sectoral level and shown in
parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 1: Regressions of TFP growth and market structure indicators on log research productivity.

(1) (2) (3) (4) (5) (6) (7)
Entry Exit Entry Exit Job Job Job
(num) (num) (job) (job) Creation Destruction Reallocation

log(IdeaProd) 0.610∗∗ 0.593∗∗∗ 0.459∗∗∗ 0.393∗∗∗ 0.967∗∗∗ 0.848∗∗∗ 1.867∗∗∗

(0.232) (0.157) (0.150) (0.0992) (0.279) (0.228) (0.493)

N 132 132 132 132 132 132 132
Within R2 0.0740 0.103 0.0991 0.110 0.0909 0.0969 0.117
Period Fixed Effect Yes Yes Yes Yes Yes Yes Yes

Notes: Entry (num) is the number of new establishments over the number of existing establishments. Entry
(job) is the number of jobs created by new establishments over total jobs. Exit (num) and Exit (job) are
defined analogously for exits. Job creation is the number of new jobs created by entrants and incumbents
over total jobs. Job destruction is the number of jobs destroyed by exits and continuers over total jobs. Job
reallocation is the sum of job creation rate and job destruction rate. Intercepts are omitted. Standard errors
are clustered at sectoral level and shown in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 2: Regressions of business dynamism indicators on log research productivity.

3 A Simple Model

This section presents an illustrative model in a continuous-time setting, illustrating the key mech-

anism that links lower research productivity with increased concentration of the productivity

distribution of firms. It also paves the way for introducing additional elements in the full model.

For simplicity, I skip the consumption side of the economy and model only the production side.
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For notational conciseness, time index t is dropped whenever possible.

3.1 Simple Model and Evidence on the Mechanism

There is a continuum of firms indexed by θ ∈ [0, 1], each of which produces one differentiated

good. Denote Aθ as firm-level productivity, aθ = log(Aθ) as its log level, and A as aggregate

productivity. Assume firm θ’s per-period profit as Πθ = CÃσ−1
θ A, where Ãθ = Aθ/A is firm θ’s

productivity relative to the aggregate level, C > 0 is a constant, and σ > 1 is a constant. The profit

function can be generated by a static model in which the demand system has Constant Elasticity of

Substitution (CES) σ and firms compete monopolistically with each other. Strictly speaking, the

constant C depends on the productivity distribution of firms, which will be case in the full model.

In this illustrative model, however, we consider it to be a constant regardless of the distribution. In

this way, we allow the distribution to be determined by firms’ growth decisions, but shut down the

feedback from the distribution to profits and hence to growth, which greatly simplifies the model.

Under the CES interpretation, σ is also the demand elasticity of each variety of goods, and aggregate

productivity is a homothetic aggregator of firms’ productivities with the form A = [
∫ 1
0 A

σ−1
θ dθ]

1
σ−1 .

Each firm can invest in research to consciously improve its productivity step-by-step. By hiring
1
2αÃ

β
θλ

2 number of researchers per period, firm θ’s innovation has Poisson rate of arrival λ, the

success upon which allows its log productivity to increase from aθ to aθ + q.32 Figure 2 illustrates

a successful innovation.33 The factor Ãβθ with β > 0 captures harder research upon more advanced

technology in a cross section of firms, while α captures the economy-wide research difficulty at

a specific time. β > 0 is supported by firm-level evidence in Bloom et al. (2020) which shows

declining research productivity as a firm grows. Since all firms are synonymous in my model

except for their productivities, lower research productivity associated with higher productivity of a

specific firm translates into the same relationship in a cross section of firms. A larger α is used for a

later historical period to capture uniformly harder research over time. Adjusting researchers’ wage

by aggregate productivity A, the research cost associated with Poisson rate λ is R = 1
2αÃ

β
θλ

2A.

For simplicity, each firm is myopic and considers only marginal profit when taking the innovation

decision, i.e. it does not solve an infinite-horizon optimization problem with discounted future

profits.

32The quadratic cost function is a typical assumption in Schumpeterian growth models which matches the elasticity
of R&D with respect to the user costs of around -1. See Bloom et al. (2002), Acemoglu et al. (2018) and Akcigit
and Kerr (2018).

33The equilibrium distribution is virtually the same under an alternative model in which innovation is modelled as
a continuous process (i.e. a dt term) rather than as a Poisson process, which is testified by the quasi-equivalence
between equation A1 and equation A2. However, the interpretations are different when looking at the data. In the
current specification only λ share of firms realize innovation and hence fast growth within each size category, and
other firms are dictated by random growth. We only need to look at fast growing firms to check the validity of the
mechanism.
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aθ aθ + q

Figure 2: Improvement of log productivity upon a successful innovation.

The innovation decision of each firm is thus:

max
λ

{
λq

dΠθ
daθ

−R
}

whose solution is

λ∗ =
Cq(σ − 1)

α
Ãσ−1−β
θ (1)

Note that λ∗ decreases exponentially with ãθ = log(Ãθ) if β > σ − 1, which is assumed in this

section. The validity of the last assumption will be discussed when introducing the more general

model. On the profit side of the innovation decision, a one percent increase in productivity increases

profit by σ − 1 percent because of the constant demand elasticity. The amount of profit increase

is however larger if the firm already reaps a higher profit. Larger firms benefit from economies of

scale when innovating: an improved technology can be used for all units of production. As firm size

is intimately tied to productivity level in the model, marginal profit increases with productivity

level with an elasticity of σ − 1. On the other hand, the marginal cost of innovation increases

with productivity level with an elasticity of β, as technological improvement becomes more difficult

with more advanced technology. Innovation intensity thus decreases with productivity if harder

innovation dominates economies of scale. Laggards enjoy a dynamic advantage due to the relative

ease of growth.

In addition to innovation, each firm is subjected to idiosyncratic log-productivity shocks which is

modelled as a Brownian motion with a standard deviation of ν.34 Keeping α constant, we focus on

the travelling wave equilibrium in which the log-productivity Probability Density Function (PDF) ϕ

maintains its shape and travels at a constant speed. As A is a homothetic aggregator of {Aθ}θ∈[0,1],
the travelling speed is also the aggregate growth rate g. After normalizing all firms’ productivities by

aggregate productivity, i.e. normalizing by aggregate growth rate after each period, the distribution

ϕ̃ is stationary, where I have used a tilde to emphasize the normalization. Taken together, each

firm’s log productivity after normalization follows the following stochastic process:

dãθ,t = (−1

2
ν2 − g) dt+ ν dBθ,t + dJθ,t (2)

where Bθ,t is Brownian motion independent across firms, −1
2ν

2 dt is a normalization term for the

34As is typical in continuous-time models, the probability of Brownian motion and innovation happening together is
of order of magnitude o(dt) so that it can be ignored. Thus when making the innovation decision, each firm ignores
the Brownian motion.
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Brownian motion so that the expected productivity change due to Brownian motion is null, and

Jθ,t is the jump process due to innovation. A Kolmogorov Forward (KF) equation describes the

dynamics of distribution ϕ̃ whose equilibrium solution can be approximated by:

ϕ̃(ã) = C1 exp(−C2ã− C3e
−(β−σ+1)ã), ã ∈ R (3)

where C1 > 0 is a normalizing constant which ensures that ϕ̃ integrates into 1, C2 = 1+2g/ν2 > 0

and C3 = 2Cq2(σ−1)
αν2(β−σ+1)

> 0. See Appendix B.1 for the derivations. Asymptotically, ϕ̃(ã) ∼
C1 exp(−C2ã) as ã→ +∞:35 ϕ̃(ã) has an exponential right tail with tail index C2, or equivalently,

the productivity distribution has a Pareto right tail with tail index C2. The index decreases with

aggregate growth, meaning that a fatter tail is associated with lower growth.36 Like in random

growth models, I have assumed idiosyncratic shocks to generate the Pareto tail. The heaviness of

the tail depends on the joint force of random growth and endogenous growth. Aggregate growth g

is the one which normalizes aggregate productivity to 1.37

We solve one travelling wave equilibrium for one constant α, and then compare different travelling

wave equilibria. Figure 3 shows two solutions, one with low α and another with high α: innovation

becomes uniformly more difficult for all firms in the high α case. Thus marginal research cost

increases by the same percentage for all firms, while marginal benefit remains unchanged in this

simple model. This implies that growth decreases by the same proportion for all firms. But what

matters for a laggard’s ability to catch up with a leader is not the ratio between their growth rates

but rather the difference between them. A higher growth rate of laggards before the increase in

research difficulty means that the reduction in laggards’ growth is more pronounced in absolute

terms. Laggards’ advantage in growth thus implies that they are more negatively affected when

research becomes more difficult. Consequently, leaders’ relative growth compared to laggards

increases, allowing the leaders to stretch out further to the right and fattening the Pareto tail

of the productivity distribution (Figure 3b). At the core of the mechanism is the semi-endogenous-

growth assumption that it is more difficult to improve upon more advanced technology, both in a

cross section and over time. With a CES demand, the fatter tail of the productivity distribution

translates into fatter tails of sales and employment, implying a higher corporate concentration of

top firms. In this illustrative model, we have shut down the feedback loop from concentration to

growth decisions. Unlike most of the papers on Schumpeterian growth, the relationship between

higher concentration and lower growth is not the former leading to the latter. Rather, higher

concentration is understood as a result of lower growth when research becomes more difficult.

Innovation intensity decreases with firm size, which is a departure from Gibrat’s law and consistent

with the data as explained below. The departure is, however, slight as only a small proportion of

35As with standard mathematical notations, f(x) ∼ g(x) as x→ +∞ means limx→+∞
f(x)
g(x)

= 1.
36As a reminder, a smaller Pareto tail index means a fatter tail.
37In other words, it is implicitly determined by: [

∫ +∞
−∞ e(σ−1)ãϕ̃(ã) dã]

1
σ−1 = 1.
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(a) Innovation intensity (b) Log productivity distribution in log scale

Figure 3: Illustrative model solutions for illustrative purposes. σ = 2, β = 2, C = 1, q = 0.2,
ν = 0.15, α = 4 for low α case and α = 8 for high α case.

firms successfully realize innovation at a specific time. I interpret these firms as high-growth firms

when investigating the data. The great majority of firms are subjected to idiosyncratic shocks at

any specific time so that their average growth is insensitive to size.38 To determine whether the

model’s mechanism is consistent with the data, I categorize firms into leaders and laggards based

on employment. Following Decker et al. (2016), high growth firms are defined as those with more

than 30% annual growth in employment. I calculate the weighted average growth of high growth

firms within leaders and laggards respectively, which takes into account both the employment share

of high growth firms and the growth rates of these firms. Figure 4a shows that the high growth

firms among the laggards grow more quickly than those of leaders in any given year. Both leaders

and laggards witness a decline in growth, but the decline is more pronounced for laggards. All of

these empirical patterns are consistent with the model in Figure 3a. Moreover, Figure 4b shows

the histograms of log TFP dispersion between the 99th quantile and the 90th quantile, where each

observation is a 4-digit NAICS sector.39 The productivity dispersion at the tail has in general

increased,40 which is consistent with the model’s prediction that the Pareto tail of productivity

distribution fattens.

To sum up, this simple model conveys the mechanism according to which an aggregate increase

in research difficulty translates into an increase in the concentration of firms. The key mechanism

(differential growth between laggards and leaders, and the fatter tail of the productivity distribu-

tion) is borne out in the data. However, many ingredients are missing form this simple model.

38Averaging across both endogenous-growth firms and random-growth firms in the model still implies higher average
growth for laggards. Such a slight departure from Gibrat’s law is consistent with the empirical evidence in Akcigit
and Kerr (2018).

39Due to data limitation, the sectors comprise manufacturing only.
40If I track each 4-digit sector and calculate its change in log TFP dispersion between 1987 and 2019, 84% of sectors
see an increase in the dispersion.
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(a) High growth among leaders and laggards (b) Histogram of TFP dispersion at tail

Figure 4: Checking the model’s mechanism with data.

Notes: Panel (a): High growth firms are those with more than 30% annual employment growth. Laggards
are firms with less than 500 employees and leaders more than 500. For each year, the plot shows the
employment-weighted average growth of high growth firms among leaders and laggards respectively. Data
source: Decker et al. (2016). Panel (b): The histogram shows the log TFP dispersion between the 99th
quantile and the 90th quantile, where each observation is one 4-digit NAICS sector of manufacturing. Data
source: US Census Bureau, Dispersion Statistics on Productivity (DiSP).

3.2 Necessity of a Richer Model

Apart from illustrating the key mechanism at work, the simple model also clarifies the necessity of

a richer model:

1. Heterogeneous demand elasticities

The assumption of β > σ − 1 is convenient in this section but tenuous in the data if the

demand system is CES. Fortunately, we do not need the assumption to be true for all firms

to make the mechanism work. As the paper focuses on the right tail, the assumption only

needs to be valid for large firms so that the largest firm can stretch out relative to moderately

large firms. Figure A2 re-plots Figure 4a with finer size bin, and shows this is the case in the

data. Following the macroeconomic literature on market power, I assume demand elasticity

decreases with firm size in the full model. Intuitively, the markets in which larger firms are

involved are more saturated, so that these firms’ ability to attract customers by cutting prices

is more limited. The full model only requires β > σ−1 where σ is the lowest possible demand
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elasticity, which is easily satisfied by the data. Introducing heterogeneous demand elasticities

also has implications for market power naturally linked to increases in concentration.

2. Entry and Exit

If demand elasticity σ declines with firm size such that σ − 1 − β is first positive and then

negative, the innovation intensity in equation 1 then features an inverted U that is often

found in Schumpeterian growth models. The low growth of the least productive firm implies

that a dynamic equilibrium may not exist, and additional stabilizing forces are needed.

Existing Schumpeterian growth models typically introduce technological diffusion to allow

laggards grow more quickly than leaders.41 Another way to stabilize the distribution is by

introducing entry and exit. The least productive firms that cannot catch up with the rest

of the distribution die. Entrants join the pool of incumbents so that the total number of

firms remain stable. I shall proceed with entry and exit in the baseline model due to their

analytical simplicity, and introduce incumbent learning as an extension. Adding entry and

exit also gives a more realistic description of job dynamics.

3. Feedback from market structure to growth decisions

The simple model keeps the functional relationship between profit and firm-specific log

productivity unchanged. The relationship should also depend on the productivity distribution

which has changed with research difficulty, i.e. C should depend on ϕ̃. A full model

thus requires two directions: how growth determines market structure, which is present in

the illustrative model; and how market structure shapes the Schumpeterian incentives of

individual firms and hence determines growth. Moreover, the latter involves the forward-

looking behavior of individual firms so that each firm optimizes discounted future profits

instead of instantaneous profit, which is adequately described by a Hamilton-Jacobi-Bellman

(HJB) equation. Joining the HJB equation with the KF equation gives rise to the Mean Field

Game (MFG) system that the full model is based on.

4 Model

Time t is continuous. The economy has a representative consumer who consumes differentiated

goods per period. Each good is produced by one firm and the firms compete monopolistically with

each other. Firms’ productivities are heterogeneous, and each firm can improve its productivity

by innovating on a stand-alone basis.42 Incumbent firms can die due to large idiosyncratic shocks

to their productivities or due to being too unproductive, and entrants keep joining the pool of

incumbent firms by learning from the latter. Figure 5 illustrates the structure of the baseline full

model. For notational simplicity, I shall drop the time index t whenever possible.

41This is introduced as incumbent learning in Section 8 of this paper, which explains higher growth of laggards in
the data.

42An extended model with incumbent firms learning from others is presented in Section 8.
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Figure 5: Illustration of the baseline full model. aθ is an individual firm’s log-productivity, and the
bold blue line represents its distribution.

4.1 Market Structure

4.1.1 Preference

The representative consumer’s utility Y from goods consumption is defined implicitly by a homo-

thetic Kimball aggregator:

M

∫ 1

0
γ(
Yθ
Y

)dθ = 1 (4)

where M denotes the total measure of varieties, Yθ is the consumption of variety θ and γ is an

increasing and concave function with γ(0) = 0 and γ(1) = 1.43

Each variety is produced by one firm indexed by θ ∈ [0, 1] and firms differ in their productivities.

Note that θ is not necessarily ordered in a way such that higher productivity corresponds to a higher

θ: θ tracks a firm and firms’ productivities evolve in a dynamic setting introduced below. In any

static moment, nevertheless, one can re-index firms such that θ̂ ∈ [0, 1] indexes log-productivities

in an orderly way. With an abuse of notation, I shall use θ as θ̂ for denoting the share of the

bottom θ firms in the size distribution. Then θ is the cumulative probability of the log-productivity

distribution with θ = Φ(aθ), where aθ is the log productivity of firm θ and Φ is the Cumulative

43To see why γ(1) = 1 as a normalization condition, consider the homogenous case in which Yθ ≡ Y0. Assume in
addition that M = 1. Then it is reasonable to have Y = Y0 as a normalization, which implies γ(1) = 1.
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Distribution Function (CDF) of log productivities.44

It should be emphasized that equation 4 implicitly incorporates the distribution of productivities.

To see this more clearly, change variable from θ to aθ to obtain:

M

∫
R
γ(
Y (aθ)

Y
)ϕ(aθ)daθ = 1

where ϕ is the Probability Distribution Function (PDF) of log productivities. The variable to be

integrated in the above equation can of course be written as any variable such as x instead of aθ,

but I shall often use aθ to emphasize the nature of individual firms. Denote ϕM = Mϕ to be the

generalized PDF which has a total measure of M . The distribution and its change will be the key

concern in the paper.

The representative consumer maximizes his/her utility Y subject to the budget constraint:

M

∫ 1

0
PθYθ dθ =W (5)

where Pθ is the price of variety θ and W the income of the consumer. Solving the consumer’s

maximization problem gives the inverse-demand curve for each variety θ:

Pθ
P

= γ′(
Yθ
Y

) (6)

where the price aggregator P satisfies:
P

ζ
Y =W (7)

and ζ is defined as

ζ =
[
M

∫ 1

0
γ′(

Yθ
Y

)
Yθ
Y

dθ
]−1

(8)

Note that there are two price indices when the preference is Kimball: P and ζ.45 The ideal price

index, which is used to deflate nominal income to evaluate welfare, is P/ζ and not P .

For notational simplicity, I shall denote Zθ =
Yθ
Y as the relative output and zθ = log(Zθ). The price

elasticity of demand for variety θ is:

σθ =
γ′(Zθ)

−Zθγ′′(Zθ)
(9)

The constant Elasticity of Substitutions (CES) preference is a special case of the Kimball preference

44To see why cumulative probability is used for indexing firms, consider the discrete counterpart of equation 4:

M 1
I

∑I
i=1 γ(

Yi/I

Y
) = 1. In this case, θ(ai/I) =

i
I
for the i-th firm.

45This is a general feature of Homothetic Direct Implicit Additivity (HDIA) preferences of which Kimball is a special
example, see Matsuyama (2023).
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with γ(Z) = Z
σ−1
σ , where σ > 1 is the elasticity of substitution between varieties of goods.

With CES, γ′(Zθ) = σ−1
σ Z

− 1
σ

θ and ζ = σ
σ−1 . The elegance of the Kimball aggregator can be

seen from equations 6 and 9: by introducing a different functional form of γ, we can generate

heterogeneous demand elasticities and hence heterogeneous markups for heterogeneous firms. The

current literature has often adopted the specification of Klenow and Willis (2016) for the Kimball

aggregator. However, as Baqaee et al. (2023) remarks, the Klenow and Willis (2016) specification

implies that the demand elasticity converges to 0 too quickly as the consumption of this variety

increases, which implies excessively high markups and excessively low sales for these varieties. I

adopt a new parametric specification in the spirit of Atkeson and Burstein (2008) which is standard

in the literature on market power.46 In particular, define γ′ for the inverse demand curve 6:

γ′(Zθ) = C
[ 1

σ
Z

kσ
σ−σ
θ +

1

σ
Z

kσ
σ−σ
θ

]−σ−σ
kσσ

(10)

where 1 < σ ≤ σ, k > 0 and C > 0. σ is the upper bound of demand elasticities and σ is the lower

bound.47 k governs the transition from the highest demand elasticity to the lowest when output

increases. C > 0 is a constant pinned down by normalizing conditions. The special case of σ = σ

corresponds to CES. When σ < σ, larger firms face lower demand elasticities and charge higher

markups. The specification resembles the nested CES of Atkeson and Burstein (2008) as it combines

two power functions, each corresponding to one limiting demand elasticity. Section 4.1.3 discusses

the properties of the demand system and shows that the resemblance is not only in appearance but

also in essence.

To see the transition of demand elasticity more clearly, use equation 9 for calculating the demand

elasticity:

σ(zθ) = σ +
σ − σ

1 + exp(−kzθ)
(11)

i.e. σ is a logistic function of zθ, which decreases monotonically with zθ and has limits:

lim
zθ→+∞

σ(zθ) = σ, lim
zθ→−∞

σ(zθ) = σ (12)

4.1.2 Firms’ Production Decision

Each variety of good is produced by one firm with labor as the only factor of production:

Yθ = AθLθ (13)

where Aθ is the productivity of the firm and Lθ the amount of labor used in the production. Firms

engage in monopolistic competition with each other and take into account the inverse demand curve

46In principle, I can also use a non-parametric form of Kimball aggregator following Baqaee et al. (2023). Nonetheless,
the parametric form makes numerical calculations easier and more accurate. It also gives a portable demand system
for further studies.

47See Appendix H.1 for the numerical calculation of γ.
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6 for pricing decisions. Optimal pricing implies the markup:

µθ =
Pθ/P

MCθ/P
=

σ(zθ)

σ(zθ)− 1
(14)

where MCθ =
w
Aθ

is the marginal cost of production and w is the wage rate. Equation 14 is similar

to the markup formula under CES, with the sole exception that σ now depends on zθ. With given

aggregate variables w and P , the intersection of the inverse demand curve 6 and the pricing equation

14 solves a firm’s static production problem at each point in time. Both price and quantity are

functions of the firm’s productivity.

Production incurs a fixed cost of fA per period, where A is the aggregate TFP to reflect higher

wages as the economy grows. The least productive firms with operational profits less than fA per

period die immediately from the market. Denote the cutoff log productivity to be a above which

operational profit is higher than fA. a is determined by the break-even condition:

Π(a;ϕM ) = fA (15)

4.1.3 Properties of the Demand System

Aggregate productivity is defined by:

A =
Y

L
(16)

where L = M
∫ 1
0 Lθ dθ is the total amount of labor inelastically supplied by the representative

consumer. It is easy to check that

A =
[
M

∫ 1

0
ZθA

−1
θ dθ

]−1
(17)

i.e. A is a harmonic mean of Aθ weighted by relative production. Given the measure of firms

M , all variables are determined by the productivity distribution so that the above equation can

be represented as A = A({Aθ}0≤θ≤1). The following property simplifies the model and numerical

calculations:

Proposition 1 (Homotheticity of the Productivity Aggregator). A is a homothetic aggregator of

firms’ productivities {Aθ}0≤θ≤1, i.e. A({sAθ}0≤θ≤1) = sA({Aθ}0≤θ≤1), ∀s > 0

Proof. Consider the case in which each Aθ is multiplied by s. To show the homotheticity of A with

respect to {Aθ}0≤θ≤1, by equation 17 we only need to show that Zθ =
Yθ
Y (∀θ) does not change.

Combining equations 6 and 14 gives:

γ′(Zθ)

MCθ/P
=

σ(zθ)

σ(zθ)− 1
(18)
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which pins down Zθ as an implicit function of Aθ and P/w:

Zθ = Z(aθ, P/w) (19)

Plugging this function into the Kimball aggregator 4 pins down P/w as a function of {Aθ}0≤θ≤1

and M . If each Aθ is multiplied by s, it is easy to check that {Zθ}0≤θ≤1 and P
sw is the new solution

to this system of equations. Price-wage ratio decreases by s but the relative quantity does not

change. This concludes the proof.

In particular, with a constant adjustment of all productivities, wage-price ratio increases by s but

relative quantities {Zθ}0≤θ≤1 do not change. In the special case of CES, A = [M
∫ 1
0 A

σ−1
θ dθ]

1
σ−1 .

Homotheticity means that we can normalize the aggregate productivity A to 1 by dividing all Aθ

by A.

Proposition 2 (Variable Demand Elasticities and Passthroughs, Pareto Tail).

If 1 < σ < σ, then

1. ∂σ
∂aθ

< 0, i.e. Demand elasticity decreases with a firm’s productivity, so that more productive

firms charge higher markups.

2. There exists a threshold â, such that passthrough ∂ log(Pθ)
∂ log(MCθ)

as a function of aθ is decreasing

on (−∞, â] and increasing on [â,+∞), i.e. the passthrough of cost shocks to price decreases

with a firm’s productivity when the latter does not exceed a certain threshold â.

3. PθYθ ∼ C1A
σ−1
θ and Lθ ∼ C2A

σ−1
θ as aθ → +∞, where C1 and C2 are positive constants.

Moreover, the distributions of these variables are Pareto-tailed if the productivity distribution

is Pareto-tailed.

See Appendix C.2 for the proof. We have used the notation ∂ to emphasize that we only consider

the direct impact of aθ on the respective variables, without taking into account the indirect effect

through aggregate variables, as each firm is infinitesimal by assumption.

The lower demand elasticities and passthroughs of more productive firms are consistent with

the empirical evidence, as surveyed by Arkolakis and Morlacco (2017), and are primordial for

Schumpeterian incentives of innovation. An improvement in productivity reduces the marginal

cost one-to-one at the log level, which then translates into a reduction of price at the rate of

passthrough. This reduction in price is more than compensated by an increase in quantity as σ > 1

so that sales and profits increase. If the passthrough is artificially high for productive firms due to

a mis-specification of the demand system, the decrease in price and the increase in profit would be

too great, giving high productivity firms an excessively stronger incentive to innovate. Similarly,

if demand elasticity σ is mistakenly high for productive firms, their growth rate would also be

excessive. In fact, the demand system in the Schumpeterian growth models of Aghion et al. (2001)
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and Aghion et al. (2005) is a simplified version of the one in Atkeson and Burstein (2008), which

the current paper mimics.

I design this new specification of demand because commonly used demand systems under monop-

olistic competition do not satisfy these properties very well. The benchmark CES does not feature

heterogeneous demand elasticities. Translog preference (Feenstra (2003)) and Generalized CES

(Arkolakis et al. (2019)) imply counterfactually higher passthroughs for more productive firms.

Even though the quadratic preference (Melitz and Ottaviano (2008)) and the Klenow and Willis

(2016) specification of Kimball satisfy the first two properties, they imply a bounded firm size

when aθ → +∞ and hence are unable to match Pareto tails. Moreover, they imply excessively high

markups for productive firms from an empirical point of view.

As my specification of Kimball is in the same spirit as Atkeson and Burstein (2008), which relates a

firm’ market power to its market share and features bounded demand elasticities, it is of no surprise

that it satisfies the properties of markup, passthrough and large firm asymptotics like Atkeson and

Burstein (2008).48 The oligopolistic competition setting of Atkeson and Burstein (2008), however,

implies strategic interactions between firms. When growth decisions are involved, as in my paper,

such interactions make even numerical solutions intractable. Thus my demand system can be seen

as an approximation of Atkeson and Burstein (2008) under monopolistic competition. The basic

assumption of monopolistic competition, which allows individual firms to interact with the whole

distribution but not with specific firms, matches exactly the setting of Mean Field Games which

simplifies the model by assuming infinitesimal agents/firms.

The specification is also reasonable from an empirical point view. Figure 6 shows labor shares

across US manufacturing establishments, where each point represents a bin of employment size

range. Recall that I have abused the notation and rearranged firms in the static setting so that θ

is the share of bottom firms. ω = − log(1− θ) is used as index instead of θ to take into account the

Pareto-tail nature of the distributions,49 with a larger value corresponding to a larger firm. Labor

share decreases with establishment size in the Census of Manufacturing with possible bounds on

the two extremities (see Appendix I for the data table). A logistic function is a natural choice to

capture this feature.

48The only concern is increasing passthrough when productivity is excessively large. This feature also exists in
Atkeson and Burstein (2008): in this case, the firm is effectively the monopoly in its sector and competes with
other sectors as if in a monopolistic competition between sectors. Since the sectoral aggregator is a CES, the
passthrough approaches 1 when the firm’s productivity tends to +∞.

49See Appendix I.1 for detailed discussions.
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Figure 6: Labor share in a cross section of establishments, US Census of Manufacturing 2002
corrected by KLEMS and the Annual Survey of Manufacturing. ω = − log(1 − θ) to take into
account the Pareto tail. Each dot is the average labor share of firms within the employment
distribution bin ω ∈ [ωi, ωi+1].

4.2 Exit and Entry

4.2.1 Exit

Incumbents face idiosyncratic shocks of log productivity modelled as Brownian motion with a

standard deviation of ν, regardless of their current level of productivity.50 The manifestation of

this productivity shock in labor, output, sales or profits depends on the demand elasticity faced

by the firm. Sales are more volatile for smaller firms with higher demand elasticities, and vice

versa for larger firms. I assume that there is a cutoff log-point change of sales −κ, where κ > 0,

such that if the decrease in sales per period exceeds κ, the firm dies. The death rate λd,θ is thus

monotonically decreasing in firm size, which is consistent with the empirical evidence shown in

Figure 7. A demand system with variable demand elasticities, in addition to the benefits discussed

in Section 4.1.3, also lends itself to heterogeneous death rates.

Formally,51

λd,θ = λd(aθ;ϕ
M ) = P

(∂ log(PθYθ)
∂aθ

· νB1 < −κ
)

(20)

where B1 ∼ N (0, 1).

A second source of exit concerns only firms close to the left boundary a. A negative shock of

50Put in discrete terms, during each period a productivity shock of N (0, ν2) is realized at the log level.
51To incentivize the definition, I have stayed slightly outside the continuous-time setting and considered its discrete
counterpart. Once definition 20 is put down, however, it only depends on the variables at time t and is equally
suitable for the continuous-time setting.
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Figure 7: Exit rate in a cross section of establishments, average of US Business Dynamic Statistics
1978-1982, all sectors. ω = − log(1− θ) to take into account the Pareto tail.

productivity can bring these firms to the left of a and hence force them to exit. The total number

of firms dying from this second channel is M ν2

2
dϕ
da (a) per period. See Appendix F.2 for the proof.

4.2.2 Entry

At any point in time, there areMe potential entrants or outsiders. Each of them invests in learning

and enters the market if the learning is successful. If it is not successful, the opportunity to enter

lapses and a new set of Me outsiders prepares for entry. Outsiders are assumed to be equipped

with an initial productivity of a: since any log productivity below a is not profitable to exploit, I

assume them to be freely available for any firm including outsiders. The learning cost is assumed

to be quadratic with respect to the Poisson success rate:

Re =
1

2
αeλ

2
eA (21)

where λe is the success rate. If the entry is successful, the outsider becomes an incumbent according

to a matching procedure. A firm with log productivity aj is randomly drawn from the log

productivity distribution of existing incumbents ϕ. The entrant enters at position aψ ∈ (a, aj ]

with probability

ψ(aψ; a, aj) = kψe
−kψ(aψ−a) + e−kψ(aj−a)δaj (aψ) (22)

where δaj is the Dirac mass function at point aj and kψ > 0 suggests imperfect learning. Figure 8

illustrates two matchings, each with a different incumbent. Section 4.2.3 explains the intuition

behind the specification by its discrete counterpart. I have included a in the notation ψ(aψ; a, aj)

to emphasize that entrants come from the initial position a.
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a aj

aψ ∈ (a, aj ]PDF

a aj′

aψ ∈ (a, aj′ ]PDF

Figure 8: Illustration of an entrant being matched with an incumbent aj or a′j . The vertical line
at aj or a

′
j illustrates the Dirac mass.

Taking into account all possible matchings, entry occurs at position aψ with probability distribution:

ψe(aψ;ϕ) =

∫ +∞

a
ψ(aψ; a, aj)ϕ(aj) daj (23)

= [kψΦ(aψ) + ϕ(aψ)]e
−kψ(aψ−a) (24)

where Φ(aψ) = 1−Φ(aψ) = P(aθ > aψ) is the survival function of the log productivity distribution.

Moreover, ψe(aψ;ϕ) =
d

daψ

[
1−Φ(aψ)e

−kψ(aψ−a)
]
so that Φe(aψ) = Φ(aψ)e

−kψ(aψ−a) is the survival

function of entrants’ log-productivity distribution. It is easy to see that Φe(aψ) ≤ Φ(aψ), ∀aψ ≥ a,

i.e. Φ first-order stochastically dominates Φe. We will shortly compare the right tail of the two

distributions.

4.2.3 Properties of the Entry Specification

The functional form of equation 22 can be understood intuitively by resorting to a discrete setting.

It is simply a succinct description of step-by-step learning with commitment under the continuous

setting. Consider its discrete counterpart illustrated in Figure 9 to appreciate this point.52 Dis-

cretize the segment between a and aj into equally-spaced N steps. Define p = e−
1
N
kψ(aj−a) and

consider the learning process as following a geometric distribution with probability p. In other

words, a potential entrant starts from position a and goes up step by step, each step with success

probability p. If the potential entrant has successfully gone through all the N steps, it has learned

all that can be learned from firm aj and enters at position aj , i.e. the incumbent aj sets the upper

bound for learning. The probability of entering at position n for n < N is pn(1 − p). Using the

fact that at position n, aψ = a+ n
N (aj − a), we have

pn(1− p) = e−kψ(aψ−a)(1− e−
1
N
kψ(aj−a)) (25)

≈ kψe
−kψ(aψ−a) · 1

N
(aj − a) (26)

52See also König et al. (2016) for the discrete specification.
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which is just the continuous part of equation 22 times the step size. The Dirac mass of equation 22

simply says that if the potential entrant has gone through all N steps, it enters at position aj . In

fact, in the discrete case such a probability is pN , which is exactly the coefficient before the delta

function.

Figure 9: Discrete counterpart of an entrant learning from aj . n = 0 corresponds to aψ = a, and
n = N to aψ = aj . For illustration purposes with a = −1, kψ = 1, aj = 1 and N = 10.

In most papers with learning such as Lucas and Moll (2014), a learning firm jumps with certainty

to aj if it has been successfully matched with aj , which corresponds to kψ = 0 in equation 22.

Why have I specified imperfect learning with kψ > 0, instead of the seemingly easier assumption of

perfect learning with kψ = 0?

The reason is that kψ > 0 not only is empirically plausible, but also eliminates multiple tails of

the solution to the KF equation. Consider a specific example in which the productivity is Pareto

distributed, or equivalently its log is exponentially distributed: ϕ(a) = kϕe
−kϕ(a−a), a ≥ a. Then

ψe(aψ;ϕ) = (kϕ + kψ)e
−(kϕ+kψ)(aψ−a), which has the same tail as ϕ if kψ = 0 and a thinner

tail if kψ > 0. Thinking about the evolution of productivity distribution over time, during any

time period dt, a total mass of Meλedt entrants with PDF ψe are injected into the market, so

that the incumbent distribution ϕ is linearly combined with the entrant distribution to form a new

distribution. When two exponential distributions are linearly combined, one with a heavier tail than

the other, the heavier tail always dominates in the combined distribution. Hence, if kψ = 0 and if

the model starts from an initial condition with a sufficiently heavy tail, the injected distribution

keeps interfering with the incumbent distribution, preventing the latter from evolving to a lighter

tail. The model then features multiple equilibria with the equilibrium distribution depending on the

initial condition of ϕ like in Lucas and Moll (2014). Adding the Brownian motion as in Luttmer
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(2012) and Perla et al. (2021) does not essentially make the equilibrium distribution unique, as

both papers require the initial condition to be thin-tailed enough to avoid the interference.53 While

the assumption is mild for the objective of these papers, it amounts to assuming what the present

paper seeks to explain. On the other hand, if kψ > 0, the entrant distribution has a lighter tail

than the incumbent distribution, making sure that it does not interfere with the tail of the latter

and allows the incumbent tail to be shaped by other forces. While multiple equilibria in the case

of kψ = 0 is not a problem per se, the above argument shows that it is the result of a cutting-edge

assumption unlikely to hold empirically.

In fact, the non-interference condition under kψ > 0 is valid for virtually any distribution ϕ one

can think of with an infinite right endpoint, proved in the following proposition.54 The condition

will be the basis for proving the unique tail index of the KF equation and is a precondition for the

numerical algorithm to start from any initial condition of ϕ.55

Proposition 3 (Non-interference Condition of Entry). If ϕ is ultimately monotone (i.e. ϕ is

monotone on [â,+∞) for some â), then ∀ks ∈ (−∞, kψ), limaψ→+∞
ψe(aψ ;ϕ)
ϕ(aψ)

eksaψ = 0.

In particular, if kψ > 0, then limaψ→+∞
ψe(aψ ;ϕ)
ϕ(aψ)

= 0 by setting ks = 0.

Sketch of proof. By definition,

ψe(aψ;ϕ)

ϕ(aψ)
eksaψ =

[
kψ

Φ(aψ)

ϕ(aψ)
+ 1

]
e−(kψ−ks)aψekψa (27)

Hence it suffices to prove limaψ→+∞
ϕ(aψ)

Φ(aψ)
e(kψ−ks)aψ = +∞ if kψ − ks > 0, i.e. the hazard rate ϕ(·)

Φ(·)
cannot decrease more quickly than any exponential function. See Appendix E for the proof.

The ultimate-monotonicity condition is a very weak condition whose violation virtually never

appears in practice. Proposition 4 below shows that any equilibrium distribution ϕ is ultimately

monotone. The assumption of imperfect learning (kψ > 0) is not only theoretically convenient, but

also empirically plausible: it simply says that learning has a positive probability of failure, no matter

how small it is. US BDS data reports the number of establishments, incumbent employment and

job creation from entrants by the size bin of establishments. kψ > 0 can be validated by a lighter

tail of entrants than incumbents. To this end, I define ω = − log(1−θ) ∈ [0,+∞) and calculate the

complementary cumulated share of employment respectively for incumbents and entrants, log(ξrL)

and log(ξre), where r stands for “right” to emphasize the accumulation from the right tail. If

incumbent (entrant) employment is Pareto-tailed, then log(ξrL) (log(ξre)) should be linear in large

53The property of the Fisher-KPP type of KF equation in Luttmer (2012) is well understood; see McKean (1975).
In particular, if the initial condition is sufficiently heavy-tailed, multiple equilibria emerge.

54As Brownian motion has an unbounded support, we only consider ϕ with an infinite right endpoint.
55Luttmer (2020) discusses how bounded learning can ensure the uniqueness of the solution to the KF equation.
In the present model, this means ψe(aψ;ϕ) = 0 if aψ exceeds a certain threshold and that the non-interference
condition is trivially satisfied. In Gabaix et al. (2016), the non-interference condition is directly assumed when
death and rebirth are introduced as “stabilizing forces”.
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values of ω. A flatter line suggests a heavier tail.

(a) (b)

Figure 10: Check kψ > 0.

Left panel: complementary cumulated share of employment for incumbents and entrants, as a function of
ω = − log(1 − θ), where the same ω is used for incumbents and entrants of the same bin. Right panel: log
entry rate as a function of ω. Entry rate per bin is the number of new jobs created by entrants divided by
the number of jobs employed by incumbents for the bin. Data source: Average of US Business Dynamics
Statistics 1978-1982, all sectors.

Figure 10a shows that entrants indeed exhibit a lighter tail than incumbents. Another way to see

this is to look at job creation rate from birth by the size bin of establishments. If the exponential

specification in equation 23 is true and kψ > 0, then the log job creation rate from birth should be

a linear and decreasing function of ω at the right tail. Figure 10b shows this is indeed the case.

4.3 Evolution of Incumbents

Apart from idiosyncratic shocks, incumbents can consciously improve their productivities via

innovation on a stand-alone basis. Like in the illustrative model, a firm with log productivity

aθ can improve its log productivity by q > 0 by incurring an innovation cost Ri,θ.
56 Denote λi,θ as

the Poisson rate of innovation success and assume the innovation cost to be quadratic in it:

Ri,θ = R(λi,θ; ãθ) =
1

2
αeβãθλ2i,θA (28)

where ãθ = aθ − a is the relative log TFP of firm θ compared to the aggregate economy. Unless

otherwise stated, a tilde will always denote normalization by the aggregate TFP.57 β > 0 captures

56In a basic Poisson process with success rate λ, the number of arrivals within one unit of time follows a Poisson
distribution with parameter λ. Thus a firm can advance multiple steps per unit of time. Moreover, the expected
per-period log-productivity improvement is λq: choosing the success rate λ or the step size q are equivalent.

57At the original level, such a normalization takes the form of division: Ãθ = Aθ/A.
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the fact that ideas are harder to find at higher levels of productivity (Jones (1995), Bloom et al.

(2020)). It governs heterogeneous research difficulties in a cross section of firms at a specific time,

while α governs the general difficulty for all firms over time. During each period, α is given a

constant value for solving a balanced growth path. Comparative statics (i.e. 1980 vs 2020) are

conducted between two balanced growth paths, with a higher value of α in the more recent period

to reflect harder research.

Taken together, firm θ’s log productivity aθ evolves according to the following stochastic process:

daθ,t = −1

2
ν2dt+ νdBθ,t + dJθ,t (29)

where −1
2ν

2 is a normalization for the Brownian motion to ensure that Aθ,t does not change in

expectation due to idiosyncratic noises, and Bθ,t is Brownian motion independent across θ. Jθ,t

is a jump term and consists of two parts: death and innovation. If death is realized with Poisson

intensity λd,θ,t, then aθ,t jumps directly to −∞ and firm θ exits. If innovation is realized with

intensity λi,θ,t, then the log productivity jumps up by q.

4.4 Innovation Decisions and Evolution of Productivity Distribution

Given the building blocks in previous sections, each incumbent firm solves its optimal innovation

decision by a Hamilton-Jacobi-Bellman (HJB) equation, and each potential entrant solves its opti-

mal entry. The productivity distribution evolves based on these optimal decisions via a Kolmogorov

forward (KF) equation.

Each incumbent’s infinite-horizon optimisation problem can be formulated as an HJB equation:

rtV (aθ, t) = max
λi

{
Π(aθ;ϕ

M
t )− fAt −Rt(λi; ãθ)−

1

2
ν2
∂V

∂a
(aθ, t) +

1

2
ν2
∂2V

∂a2
(aθ, t)

+ λi
[
V (aθ + q, t)− V (aθ, t)

]
− λd(aθ;ϕ

M
t )V (aθ, t) +

∂V

∂t
(aθ, t)

}
(30)

where

Rt(λi; ãθ) =
1

2
αeβãθλ2iAt, (31)

rt is the interest rate, ϕ
M
t =Mtϕt is the generalized PDF of log productivity at time t, Π is the per-

period production profit which depends on the firm’s log productivity aθ and the market structure

ϕMt , λd(aθ;ϕ
M
t ) is the death rate defined in equation 20. See Appendix F.3 for derivations of the

HJB equation.

Equation 30 has an intuitive interpretation: the per period flow value should be equal to the sum

of current-period profit net of fixed cost and innovation cost, plus a change of value due to the
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normalizing drift −1
2ν

2, plus a second order derivative due to idiosyncratic Brownian motion, plus

an increase in value due to innovation, plus a decrease in value due to death and plus a change of

value function over time.

The first order condition of innovation, which describes its optimal intensity, is:

λ∗i (aθ, t) =
1

αAt
e−βãθ

[
V (aθ + q, t)− V (aθ, t)

]
(32)

I have introduced in Section 4.1.2 the left boundary at below which a firm dies immediately, i.e.

an “absorbing barrier” on the left:58

V (at, t) = 0 (33)

For entry, each potential entrant solves the maximisation problem:

max
λe

{
−Re,t(λe) + λe

∫
R
V (aψ, t)ψe(aψ;ϕt) daψ

}
(34)

where

Re,t(λe) =
1

2
αeλ

2
eAt (35)

The maximisation problem involves only the instant period as the opportunity to enter lapses if

not taken advantage of.

The first order condition of entry, which gives its optimal intensity, is:

λ∗e(t) =
1

αeAt

∫
R
V (aψ, t)ψe(aψ;ϕt) daψ (36)

Given the choice of λi and λe, the Kolmogorov Forward (KF) equation describes the evolution of

the log-productivity distribution ϕM (aθ, t):

∂ϕM

∂t
(aθ, t) = −

∂[−1
2ν

2ϕM ]

∂a
(aθ, t) +

1

2
ν2
∂2ϕM

∂a2
(aθ, t) + λe(t)Meψe(aθ;ϕt)− λd(aθ;ϕ

M
t )ϕM (aθ, t)

+ λi(aθ − q, t)ϕM (aθ − q, t)− λi(aθ, t)ϕ
M (aθ, t) (37)

See Appendix F.4 for a proof of the KF equation based on the law of motion of firms. The

terms have intuitive interpretations: apart from the usual terms for drift and Brownian motion,

λe(t)Meψe(aθ;ϕt) describes the change of distribution due to entry, −λd(aθ;ϕMt )ϕM (aθ, t) describes

the first type of firm death due to sales shocks,59 and the last two terms describe the change of

58At the algorithm level, solving HJB 30 numerically requires another boundary condition on the right as a computer
can only handle finite segments. A natural choice for the right boundary at is a “reflecting barrier”, i.e. aθ,t is
brought back to at if it goes above at. Formally, ∂V

∂a
(at, t) = 0. Note that the reflecting barrier is not used for

stabilizing the productivity distribution. As shall be seen, the most productive firms have growth rates lower than
average, which already stabilizes the distribution.

59The second type of firm death near the left boundary is incorporated into the boundary condition.
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distribution due to innovation. Like in the illustrative model, λi(aθ−q, t)ϕM (aθ−q, t) captures the
inflow into position aθ from position aθ − q due to successful innovation from the latter, while

λi(aθ, t)ϕ
M (aθ, t) captures the outflow from position aθ. The boundary condition for the left

absorbing barrier is:60

ϕM (at, t) = 0 (38)

For notational elegance and computational simplicity, it is useful to define a functional operator Ft
and write both the HJB and the KF in terms of it:

FtV (aθ, t) = −1

2
ν2
∂V

∂a
(aθ, t)+

1

2
ν2
∂2V

∂a2
(aθ, t)+λi

[
V (aθ+q, t)−V (aθ, t)

]
−λd(aθ;ϕMt )V (aθ, t) (39)

HJB 30 and KF 37 can now be written as:

rtV (aθ, t) = max
c, λc

{
Π(aθ;ϕ

M
t )− fAt −Rt(λc; ãθ) + FtV (aθ, t) +

∂V

∂t
(aθ, t)

}
∂ϕM

∂t
(aθ, t) = F⊺

t ϕ
M (aθ, t) + λe(t)Meψe(aθ;ϕt)

where F⊺
t is the adjoint operator of Ft. See Appendix F.5 for the proof of adjointness. In numerical

calculations where Ft is discretized into a matrix, the discrete counterpart of F⊺
t is then the

transpose of this matrix. Hence the notation ⊺ for representing the adjointness.

4.5 Travelling Wave Equilibrium

We will focus on the balanced growth path in which the log-productivity distribution keeps its

shape and travels at a constant speed, i.e. a travelling-wave solution. As aggregate productivity

is a homothetic aggregator of firms’ productivities (Proposition 1), aggregate growth is the same

as the travelling wave speed. After normalization by the aggregate growth, the log-productivity

distribution becomes stationary and all the macroeconomic variables are constant. For the balanced

growth path to exist, interest rate r, innovation cost parameter α, and entry cost parameter αe are

kept constant. The comparative statics of different historical periods will be based on comparing

different balanced growth paths with different sets of parameters.

The following definition summarizes the equations constituting a travelling wave equilibrium.

Variables are normalized by aggregate growth, where a tilde denotes normalization.

Definition 1 (Travelling Wave Equilibrium).

Denote F̃ to be the functional operator:

F̃ Ṽ =
[
− 1

2
ν2 − g

]
Ṽ ′(ãθ) +

1

2
ν2Ṽ ′′(ãθ) + λi(ãθ)

[
Ṽ (ãθ + q)− Ṽ (ãθ)

]
− λd(ãθ; ϕ̃

M )Ṽ (40)

60At the algorithm level, the boundary condition for the right reflecting barrier is 1
2
ν2ϕM (at, t) +

1
2
ν2 ∂ϕ

M

∂a
(at, t) = 0,

where I have not removed 1
2
ν2 to make it consistent with the general form in the case of reflecting barriers.
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Then incumbent HJB in the case of a travelling wave is:

(r − g)Ṽ = max
λi

{
Π(ãθ; ϕ̃

M )− f − R̃(λi; ãθ) + F̃ Ṽ
}

(41)

with boundary condition

Ṽ (ã) = 0 (42)

where

R̃(λi; ãθ) =
1

2
αeβãθλ2i (43)

The entry decision is:

max
λe

{
− C̃e(λe) + λe

∫
R
Ṽ (ãψ)ψe(ãψ; ϕ̃) dãψ

}
(44)

where

C̃e(λe) =
1

2
αeλ

2
e (45)

The KF equation is equivalent to two equations, one for ϕ̃

0 = F̃⊺ϕ̃(ãθ) +
λeMe

M
ψe(ãθ; ϕ̃) (46)

with boundary condition

ϕ̃(ã) = 0 (47)

and another one for M which represents balanced entry and exit:

λeMe =M
[ ∫

R
λd(ãθ; ϕ̃

M )ϕ̃(ãθ) dãθ +
ν2

2
ϕ̃′(ã)

]
(48)

The left boundary ã is pinned down by the zero-profit condition:

Π(ã; ϕ̃M ) = f (49)

The travelling wave equilibrium (i.e. balanced growth path) is defined by equations 40-49, and

aggregate growth g which, after solving the KF equation, normalizes aggregate productivity A to

1.61

See Appendix F.6 and F.7 for the proof of the normalizations and Appendix H for the computational

algorithm. Compared to the general setting, all t indices and partial derivatives with respect to t

are dropped, as the problem is time-invariant after normalization by the aggregate growth. Two

−g terms appear in HJB 41, one on the left hand side and another one in F̃ Ṽ . The first one is due

to profits growing at the growth rate g. When discounted at the interest rate r, it is as if the profits

do not grow while the interest rate decreases by g. The second −g term comes from the fact that

61At the algorithm level, the right reflecting barrier implies the boundary conditions Ṽ ′(ã) = 0 for the HJB and
1
2
ν2ϕ̃(ã) + 1

2
ν2ϕ̃′(ã) = 0 for the KF.
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we are now reasoning in term of the normalized log productivity, whose stochastic process features

an additional −gdt term compared to equation 29.

The following proposition is one of the most important results of this paper: the equilibrium log-

productivity distribution ϕ̃ features a unique exponential tail, regardless of the initial condition

for solving the KF equation. Consequently, productivity, sales and employment are all Pareto-

tailed with a unique Pareto index. Moreover, there is a one-to-one correspondence between lower

aggregate growth and a fatter Pareto tail, regardless of market power. Compared to the existing

literature, we can link aggregate growth to rising tail concentration in Figure 1, without resorting

to additional assumptions about the initial distribution when solving the KF equation.

Proposition 4 (Unique Tail of Equilibrium Distribution).

If β > σ − 1 and kψ > 0, then

1. Any solution ϕ̃ to KF equation 46 must be ultimately monotone.

2. ϕ̃ has an exponential tail with unique tail index −ξ, where ξ is the unique negative root of

−1

2
ν2ξ2 − (

1

2
ν2 + g)ξ + λd(∞) = 0 (50)

and where λd(∞) = ΦN (− κ
ν(σ−1)) and ΦN is the CDF of standard normal distribution N (0, 1).

In other words, the equilibrium productivity distribution has a unique Pareto tail index of −ξ.
Moreover, equilibrium sales and employment distributions have a unique Pareto tail index of

−ξ/(σ − 1).

3. −ξ is strictly increasing in g, i.e. lower growth is associated with fatter Pareto tails.

See Appendix G for the proof. The non-interference condition under the imperfect learning

assumption kψ > 0 (Propositions 3) is key for ensuring the uniqueness, as the proof reveals.62 In

the calibrated model, a uniform increase in research difficulty α across all firms decreases aggregate

growth and Pareto-tail indices, i.e. tails become fatter. The mechanism is similar to the one in the

illustrative model and will be discussed with the numerical results in Section 6.

For the period before 1980, we will consider economic integration as an additional economic force on

top of harder research. Economic integration has two effects: an increase in market size L, and an

increase in the number of firms M . The latter is pinned down by the balanced entry/exit condition

with an increase in the potential number of entrants Me. The following proposition analyzes the

first effect of market size L expansion, keeping Me unchanged. It shows that expanding the market

size can annihilate the harder research if the magnitudes of both changes happen to be the same:

62Note that Proposition 4 only ensures the uniqueness of the solution to the KF equation, but not the uniqueness of
the whole mean field game system. The latter remains an open question, even though numerical solutions have been
reassuringly unique. Moreover, the existence of a solution to the KF equation has not been analytically proved,
though the numerical algorithm has consistently found solutions.
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Proposition 5 (Indistinguishable Economies). An economy with labor L, fixed cost f , innovation

cost parameter α and entry cost parameter αe is indistinguishable from another economy with

parameters NL, Nf , Nα and Nαe (N > 0), keeping all the other parameters the same, except that

all the firms and their value functions in the second economy are N times large.

The indistinguishability is in both the static and the dynamic senses; see Appendix F.8 for a proof

by verification.63 Entry cost parameter αe will be calibrated to αeβã to reflect the difficulty of

knowledge, so that its change is tied to α. The proposition says that more difficult research can

be compensated by a larger market, as firms can earn higher profits with a larger market size L

to incentivize innovation. The pro-growth effect of a larger market size should be distinguished

from semi-endogenous growth models in which population growth cancels the harder research and

maintains constant growth. In the models summarized by Jones (2005), for instance, population

growth allows for more people to be allocated as researchers through the binding resource constraint.

In the present paper, by contrast, it is by higher profits incentivising Schumpeterian growth. The

pro-growth effect of a larger market size is reminiscent of the argument in Chandler (1990) that

firms expand their geographical reach as a growth strategy.

It should not be surprising that the proposition yields a clean result when the static fixed cost f is

assumed to change by the same proportion. As research features economies of scale, research costs

can be seen as a dynamic fixed cost. Both the dynamic and the static fixed costs are diluted by a

larger market size. For the numerical exercise on the pre-1980 period, we shall keep the static fixed

cost constant like in the international trade literature so that firms benefit from (static) economies

of scale when the market size increases. We increase L and Me by the same proportion to reflect

economic integration. The increase in Me endogenously increases the number of incumbent firms

M and introduces a competition effect. The implications of economic integration in addition to

harder research will be discussed in Section 7.

5 Calibration

Comparative statics in Section 6 will be between 1980 and 2020, and in Section 7 between 1960

and 1980. The choice of 1980 as the watershed is motivated by most papers in the literature which

investigate declining growth, increasing concentration and market power, declining labor share, and

diminishing business dynamism for the post-1980 period. Such a focus in the literature is partly

driven by data availability, as US Business Dynamics Statistics (BDS) has only been available since

1978, and partly by data patterns, as the declining labor share and increasing markup have been

most apparent since the 1980s.

Most parameters remain unchanged from 1980 to 2020, except the interest rate r, research cost

parameter α, and entry cost parameter αe which is intimately tied to α. Table 3 summarizes all

63In mathematical terms, we are looking for a “characteristic line” of the model.
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the parameters for 1980 and 2020.

Parameter Description Value Source

σ Upper bound of demand elasticity 6.5 External
σ Lower bound of demand elasticity 1.93 Estimated from US Census
k Transition speed of demand elasticity 0.32 Estimated from US Census

αt=2020/αt=1980 Change in research cost 6.84 Estimated from US aggregate
β Harder research for higher TFP 1.6 Estimated from Compustat

rt=1980 Interest rate 0.0469 External
rt=2020 Interest rate 0.0109 External
L Labor force 1 Normalization

αe,t Research cost of entrants αtÃt
β

Model assumption
αt=1980 Research cost parameter in 1980 557 Structural estimation

q Innovation step 0.201 Structural estimation
ν Std of idiosyncratic shocks 0.118 Structural estimation
κ/ν Relative death threshold 2.99 Structural estimation
Me Mass of potential entrants 0.71 Structural estimation
f Fixed cost 0.104 Structural estimation
kψ Learning parameter 1.37 Structural estimation

Table 3: Summary of parameters for 1980 and 2020. Parameters that can change between 1980
and 2020 are indexed by t.

5.1 Demand Parameters

Demand parameters σ, σ and k can be estimated by labor shares in a cross section of firms. The

approach is similar to the Kimball demand estimation of Baqaee et al. (2023), except that they

use pass-through instead of labor share, and they estimate the demand non-parametrically while I

take advantage of the parametric form. For a few vintages, the US Census Bureau publishes data

on payrolls, material costs, sales, value added and number of establishments for each employment

size range of manufacturing establishments. I use the 2002 vintage for estimating the demand

parameters.64 A few adjustments of the labor shares are needed before the estimation: (1) the

Census Bureau does not collect information on service input and thus does not deduce it from sales

when calculating value added, overstating the value added and thus understating the labor share;

(2) payroll is narrowly defined in the data and excludes fringe benefits; (3) the model does not

feature heterogeneous wages, so the average payroll per employee of each size bin is adjusted to the

sectoral average; (4) the model does not feature capital, so the labor share in the data is adjusted

to be consistent with the model. See Appendix I.2 and I.3 for detailed discussions.65

64Using the 2012 vintage, for which the Census Bureau also publishes the information, yields similar results.
65See also the appendix in Autor et al. (2020) for the first two points. They show that the labor share in the Census of
Manufacturing after these two adjustments is close to that in the National Income and Product Accounts (NIPA).
Figure 6 presents the labor share after the first two adjustments.
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The adjusted labor share is close to 1 for the smallest firms. As σ = 1
1−χ , where χ is the upper

bound of the labor share corresponding to the smallest firms, σ is sensitive to a small change in χ

when the latter is close to 1. Thus I have calibrated σ as 6.5, which is in the middle of the range

used in other papers with nested-CES preferences under oligopolistic competition (see Atkeson and

Burstein (2008), De Loecker et al. (2021), Gaubert and Itskhoki (2021) and Burstein et al. (2020)).

σ is estimated as 1.93 which corresponds to the lowest labor share of the largest establishments in

the data, which is consistent with the estimates of these papers. It remains to estimate k, which

governs the transition of demand elasticity as firm size increases. See Appendix I.4 for details.

5.2 Interest Rates and Research Parameters

I follow Liu et al. (2022) in using the US AA corporate bond rate net of current inflation for

calibrating interest rates in 1980 and 2020, as it is more relevant than the 10-year treasury rate as

firms’ discount rate. They are 0.0469 for 1980 and 0.0109 for 2020.

The research cost function 43 implies that λc = ( 2α)
1
2 e−

β
2
ãθR̃

1
2 , i.e. growth increases with research

input R̃ but features decreasing returns to scale with the degree of 1
2 . I follow the methodology in

Bloom et al. (2020) with decreasing returns to estimate research productivity, i.e.

Research productivity = Growth/Effective number of researchers
1
2 (51)

where the effective number of researchers captures the research cost and is measured as R&D

expenditures deflated by the average male wage with four years or more of college education. With

aggregate data, the decrease in research productivity over time reflects a general increase in α

across all firms. α is estimated to increase by 6.84-fold from 1980 to 2020. For β, which governs

the harder research in a cross section of firms, I use micro-level evidence and estimate it with

Compustat. Following the methodology of Bloom et al. (2020), β is estimated as 1.6.

5.3 Structurally Estimated Parameters

According to Proposition 5, we can normalize the labor force in 1980 as 1 so that the other

parameters can be identified. I set αe to be αeβã so that entrants’ learning cost function also reflects

the industry-average knowledge difficulty α and cross-sectional differences eβã. The adjustment

factor eβã reflects the more difficult knowledge at higher levels of technology, independently from

the distribution of productivities to be learned from. The content of knowledge is harder if entrants

start from a higher level of productivity, irrespective of whether they can be more or less effectively

matched with more productive firms.66 The specification is also consistent with the incumbents’

66Despite the same cost function of entry and incumbent innovation, kψ and q can adjust the relative effectiveness
of one with respect to the other. See Appendix D for a more detailed discussion of the cross-sectional adjustment
factor eβã.
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learning cost function 52 in the extended model.

The remaining parameters are structurally estimated by targeting data moments in 1980. While a

change in one parameter moves virtually all the moments, some moments are especially useful for

identifying specific parameters. The structurally estimated parameters and their main identifying

moments are summarized in Table 4. αt=1980 targets the average TFP growth of 0.95% in the 1970s

and 1980s according to BLS-KLEMS data, and q targets the 2.4% share of R&D expenditure over

GDP in the National Income and Product Accounts (NIPA) around 1980. Idiosyncratic shock is the

predominant reason for the incumbent’s job creation and job destruction: ν is thus identified by the

job reallocation rate of 29% around 1980 according to the BDS.67 The travelling wave equilibrium

features balanced entry/exit, so I take the average of the entry rate and exit rate around 1980 to

be the targets for both moments. The entry rate is measured as the job creation rate from birth

and the exit rate as the job destruction rate from death. The average of these around 1980 is

5.6% according to the BDS. By the definition of the first kind of death in equation 20, which is

the predominant form of death, the threshold-volatility ratio κ/ν rather than κ is what ultimately

matters for the death rate. Thus I use κ/ν to target the death rate of 5.6%. The number of potential

entrants Me targets the entry rate of 5.6%. Per-period fixed cost f determines the lower-bound

productivity through the zero-profit condition 49, and thus shapes the demand elasticities and exit

rates of the least productive firms. I use it to match the 20% exit rate of the smallest size bin

in the BDS, corresponding to the bottom 55% firms in the employment size distribution. Finally,

this paper takes a productivity view of firm size distribution. As entrants’ size distribution closely

match the dying firms’ size distribution in the BDS, the contribution of net entry to growth should

be tiny from this point of view and for consistency with the model. Without a better measure of

the contribution, I estimate kψ to match a 0 contribution, as kψ shapes the entry distribution.68

The parameters are estimated using the Generalized Method of Moments (GMM). Weights are

the inverse of the square moments to represent errors in percentage terms, except for the growth

contribution of net entry whose weight is the same as that of TFP growth.

5.4 Travelling Wave Equilibrium of 1980

Figure 11 shows the travelling wave equilibrium of 1980 based on calibrated parameters. Figure 11a

displays the optimal innovation intensity of incumbent firms featuring an inverted-U relationship

with log productivity. As demand elasticity decreases with productivity, a similar inverted-U

relationship exists between demand elasticity and innovation intensity, as discussed in Section 3.2.

My paper follows Aghion et al. (2001) in understanding competition as the demand elasticity a firm

is facing. Even though the inverted-U relationship between competition and innovation is typical

67See Appendix H.7 for the computation of the job creation rate and job destruction rate.
68See Appendix H.8 for the computation of the net entry contribution to growth.
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Parameter Main Identifying Moment Moment Data Moment Model

αt=1980 TFP growth rate 0.95% 0.98%
q R&D share of GDP 2.4% 2.3%
ν Job reallocation rate 29% 28%
κ/ν Exit rate 5.6% 5.6%

Me,t=1980 Entry rate 5.6% 5.6%
f Bottom 55% firms’ exit rate 20% 20%
kψ Growth contribution of net entry 0% -0.08%

Table 4: Estimated parameters for 1980 by moment matching.

in Schumpeterian growth models, the mechanism is different from that in Aghion et al. (2005).

In an economic environment with more elastic demand and hence higher competition, given the

same percentage difference in productivity, the firm size difference is larger. The monotonicity

of innovation intensity depends on how effectively a more productive firm can benefit from the

economies of scale of innovation. Thus more productive firms in a more competitive environment

are better able to take advantage of the economies of scale associated with size, so that it dominates

the higher marginal innovation cost. Innovation intensity is thus increasing in productivity when

demand elasticity is high, and vice versa when demand elasticity is low.69

While the higher innovation cost associated with higher productivity is a trait of knowledge, the

Schumpeterian incentive works through the lens of market structure and thus depends on demand

elasticity. The lower demand elasticity of a larger output can be interpreted as market saturation:

this is evidently the case with the linear demand curve in Melitz and Ottaviano (2008) where

each variety of goods has an upper bound of demand. The same intuition applies for other demand

systems in which demand elasticity decreases with quantity: with a higher consumption in a specific

variety of goods, the same reduction of price in percentage terms translates into a lower percentage

increase in demand. Market saturation implies that at the right tail, increasing the firm size is

not sufficiently effective for benefiting from economies of scale. The harder innovation effect thus

dominates and innovation intensity decreases with firm size.

Because the model assumes imperfect learning, the entry rate declines exponentially with log

productivity along the distribution in Figure 11b. The exit rate declines in a similar way, as demand

elasticity declines with firm size: to knock out a larger firm by sales shock, a larger productivity

shock is needed, whose probability of occurrence is lower. Both entry rate and exit rate closely

resemble the pattern in the data.

69Such an inverted-U between a firm’s innovation intensity and relative step size vis-à-vis its competing peer can
also be found in models following Aghion et al. (2001), if the innovations of both leaders and laggards are assumed
to be step-by-step. This is because the value function has a lower bound and an upper bound, hence close to 0
marginal change at the two extremities, despite their assumption that marginal innovation cost does not increase
with technological level.
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(a) λc (b) Entry rate and exit rate

(c) ϕ̃ (d) log(ϕ̃)

Figure 11: Travelling wave equilibrium of 1980.

Notes: ãθ is firm’s log productivity. Aggregate log productivity is normalized to 0. Panel (a): incumbent
innovation intensity. Panel (b): entry rate λeMeψe

Mϕ̃
and exit rate λd along the distribution of firms. The entry

rate close to ã is not shown as ϕ̃ in the denominator is close to 0. Panel (c): log-productivity distribution.
Panel (d): log-productivity distribution in log scale to emphasize the tail.
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Figure 11c shows the equilibrium log-productivity distribution ϕ̃ which has an exponential tail. By

construction ϕ̃(ã) = 0 at the left boundary because of absorbing barrier: firms immediately die if

touching the boundary. To emphasize the exponential tail, Figure 11d plots the distribution again

in log scale, with the right tail being linear. The exponential tail of log-productivity distribution

is the same thing as the Pareto tail of productivity distribution, which then translates into Pareto

tails of sales and employment distributions through the demand structure (Proposition 2). When

the productivity distribution has a fatter tail due to dynamic effects of growth, markup increases

because of reallocation towards high markup firms, as will be discussed in Section 6. The log-

productivity distribution is log linear at right tail but log concave overall: this feature is shared by

many other commonly-used distributions with Pareto tail, such as Fréchet distribution. In a static

model with fixed productivity distribution, such log-concavity implies that market size expansion

decreases within-firm markup more than it reallocates market share towards high markup firms.70

If both forces are present, i.e. fatter tail due to dynamic growth effects and market size expansion

due to static economic integration, the latter force may compensate higher markup of fatter tail,

as will be discussed in Section 7.

6 Comparative Statics When Ideas Are Getting Harder to Find

What happens to growth, concentration, market power, labor share and business dynamics when

ideas get harder to find? As explained in Section 5, I calibrate a 6.84-fold increase of α from 1980 to

2020 using the methodology of Bloom et al. (2020). Entrants’ learning cost parameter αe increases

accordingly due to its tight relationship with α. The interest rate decreases and promotes growth

like in standard macroeconomic models, which partially mitigates the effects of harder research.

Since the model is sensitive to interest rate, its effect should be jointly evaluated to speak to the

data. Moreover, given the large magnitude of the increase in research difficulty, compensating forces

should be expected to exist in a well-functioning economic system. In standard consumption-based

asset pricing models, such a decrease in interest rate can be endogenized by a decrease in the

growth rate. As the interest rate can decline for reasons other than the growth rate, for instance

the global saving glut (Bernanke (2005)), I remain agnostic about the source of interest rate decline

and calibrate an exogenous change.

Figure 12a compares the innovation intensities in both periods. Given the uniform increase in

research difficulty across all firms, the intensity curve shifts down so that aggregate growth declines.

The decrease in growth is however larger for firms that previously enjoyed a higher growth: these

70If the log-productivity distribution is log linear, i.e. the productivity distribution is exactly Pareto, then the two
forces exactly cancel each other so that the aggregate markup does not change. If it is log convex, then between-firm
reallocation dominates so that markup increases in a market size expansion. The results hold for a wide range of
demand systems with variable demand elasticities; see the appendix in Autor et al. (2020). To the best of my
knowledge, I have not seen any log convex assumption in the macroeconomics and trade literature. As the exact
Pareto is a cutting-edge case, the endogenously-generated distribution with overall log-concavity in this paper is
consistent with the typically assumed distributions in static models.
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(a) λc (b) log(ϕ̃)

(c) log(PDF) of log(PθỸθ) (d) Markup µ

Figure 12: Comparison between 1980 and 2020. Panel (a): innovation intensity; Panel (b): log PDF
of log productivity; Panel (c): log PDF of log sales; Panel (d): cost-weighted markup distribution.

firms have a dynamic advantage of growth and are particularly hurt when innovation becomes

more difficult. Thus, even though the growth rate of the most productive firms declines in absolute

terms, it increases in relative terms compared to that of medium-sized firms. This allows leaders to

stretch out further to the right tail relative to the latter, implying a fatter tail of the productivity

distribution and firm size distributions. To emphasize the heaviness of the tail, Figures 12b and

12c plot the productivity distribution and sales distribution in log-log terms. Both distributions

show a flatter linear tail in 2020 than in 1980, meaning a fatter Pareto tail in 2020. The higher

concentration due to fatter tails translates into a higher markup, as shown in the cost-weighted

markup distributions in Figure 12d.

Table 5 summarizes the changes in key macroeconomic moments from 1980 to 2020 in the model

and in the data. The model explains a majority of the data changes in all cases despite all these
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moments being non-targeted. (1) The sales share of the top 1% firms increases as the Pareto

tail of the sales distribution fattens. (2) TFP growth declines as harder research dominates all

other mitigating forces including the lower interest rate. (3) Because we have assumed a demand

system with variable demand elasticities, aggregate markup increases with the tail fatness of the

productivity distribution other things being equal. (4) The aggregate labor share decreases, as labor

is the only factor of production in the model so that labor share is simply the inverse of the markup.

(5) Table 6 conducts a Melitz and Polanec (2015) decomposition of markup change in the model

into a within-firm component, a reallocation component between firms, and a net entry component.

A similar analysis is done for labor share. Both the increase in markup and the decrease in labor

share predominantly come from reallocation from low markup (i.e. high labor share) firms to high

markup (i.e. low labor share) firms, which is consistent with the micro-level empirical evidence

(see De Loecker et al. (2020) for markup, Autor et al. (2020) and Kehrig and Vincent (2021) for

labor share). (6) The lower demand elasticity that accompanies higher markup also means that the

same idiosyncratic productivity shock translates into less employment and sales fluctuations. This

is consistent with the evidence in Decker et al. (2020) that declining job fluctuations stem not from

a decreasing volatility of idiosyncratic shocks but from a weaker responsiveness of firms to these

shocks. Incumbent job creation and job destruction rates decline, as does their death rate. (7) The

entry rate declines as learning becomes more difficult for potential entrants. (8) Combining (6) and

(7) together, the job reallocation rate decreases.

Moment Data ∆ Model ∆

Sales share of top 1% firms 10.07% 10.31%
TFP growth -0.41% −0.44%
Cost-weighted markup 11.40% 8.86%
Labor share -5.39% −3.41%
Job creation by birth (entry) -2.70% −1.93%
Job destruction by death (exit) -1.67% −1.67%
Job creation rate -5.13% −2.82%
Job destruction rate -4.06% −2.88%
Job reallocation rate -8.12% −5.69%
R&D over value added 64.50% 75.83%

Table 5: Moment changes between 1980 and 2020, Model and Data. All the changes are non-
targeted.

Within Between Net entry Total

∆Labor share −0.22% −3.15% −0.03% −3.41%

∆Markup 0.59% 8.31% −0.04% 8.86%

Table 6: Melitz-Polanec decomposition of markup and labor share changes between 1980 and 2020.

In the existing Schumpeterian growth literature à la Aghion et al. (2001), growth often declines as
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a result of higher concentration. That framework features a continuum of sectors each with a fixed

market size and with two firms competing oligopolistically with each other. Market concentration is

interpreted as the share of sectors with a specific technological gap between the two firms. A higher

concentration per se does not affect individual firms’ growth decisions,71 as the market size of each

sector is fixed, but has a composition effect as polarized sectors grow less quickly. In the present

paper, however, growth does not decline due to a more concentrated market structure. Higher

concentration actually promotes growth in the model and acts as a mitigating force against harder

research, as higher rents better incentivize innovation. To grasp this point, consider a hypothetical

case in which market structure ϕ̃M retains its 1980 value in 2020, while all the other parameters

have changed to their 2020 value. Figure 13 compares the solution to the HJB equation in the

hypothetical case with that in the actual solution of 2020. In the hypothetical case, the value

function increases less quickly with productivity than in the actual case because of lower profits.

Consequently, growth is lower in the hypothetical case (Figure 13b). Higher concentration is a

result of lower growth, not the reason behind it.

(a) Value function (b) Innovation intensity λi

Figure 13: Comparison between the hypothetical case and actual case in 2020. In the hypothetical
case, the market structure ϕ̃M takes the value of its 1980 solution, while other parameters take the
value in 2020. The red line in Panel (b) is the same as the red line in Figure 12a.

7 Introducing Economic Integration

While the previous section well accounts for the key macroeconomic moments since 1980s, a major

puzzle remains: before the 1980s, how could concentration increase with a fattening Pareto tail

without a trend in markup or labor share? Before 1980, labor share according to the US Bureau

of Economic Analysis (BEA) had no apparent trend, and both sales-weighted markup (De Loecker

71If higher concentration is an endogenous outcome, e.g. due to a lower technological diffusion rate, then firms’
growth decisions can be different.
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et al. (2020)) and cost-weighted markup (Edmond et al. (2023)) had similar values in 1980 as in 1950,

even though TFP growth declined (Gordon (2016), Nordhaus (2021)) and corporate concentration

was increasing rapidly (Kwon et al. (2022)). I choose 1960 as the starting point for the earlier

period, as sales concentration as measured by Kwon et al. (2022) is only available from that date.72

This section argues that introducing economic integration in addition to harder research can account

for the pattern, acting as another first-order economic force during the earlier periods. Historical

evidence motivates such an investigation. According to Gordon (2016), the 1920s-1970s saw the

heyday of US government spending on highways, interrupted only by World War II. The inflation-

adjusted domestic airfare per mile decreased by -4.55% per year between 1940 and 1980, and

only by -0.1% per year after 1980. The construction of highway and airline facilities, as well as

other basic infrastructure, could have significantly reduced non-tariff trade costs across US regions

in earlier periods. Deregulations could also have played a role in facilitating integration. One

of the most notable examples is the 1978 Airline Deregulation Act which removed restrictions

on the routes and market access of airline companies. The effect of economic integration is

potentially large as US regions are close to each other, and each of them can be construed as

a small economy. As is well-known from the trade literature, smaller economies are more open to

trade, and geographical distance is key.73 The above historical examples thus prompt us to consider

economic integration as another important force shaping the economic landscape of earlier periods.

Perhaps not coincidentally, some European countries witnessed rising concentration with stable

market power in the last few decades (Bighelli et al. (2023), Gutiérrez et al. (2022) and Bauer

and Boussard (2020)), during the archetypal integration into the European Union. Such a similar

experience also motivates us to consider economic integration as a confounding economic force.

I study the 1960-1980 period in the US to show the effect of economic integration in conjunction

with harder research. Consider a thought experiment in which there are N identical economies in

autarky in 1960. All the economies are on the same travelling wave equilibrium as described by the

model. As in the previous section, ideas are harder to find in 1980 than in 1960, and the interest

rate declines which partially mitigates the harder research. Based on the same methodology as in

Section 5, I calibrate a 7.93-fold increase in α from 1960 to 1980. For the interest rate, the paper

takes a secular perspective and views the decline in the natural interest rate from 1960 to 1980 as

the change in firms’ discount rate during the period.74 Such a change is added to the 1980 real

corporate rate to calibrate firms’ discount rate in 1960.75

72Asset concentration measured by Kwon et al. (2022) has a longer coverage, but the model cannot speak to it.
73Globalization during the post-1980 period should in principle also have an effect through the logic of this section.
However, international trade openness measured as the trade-to-GDP ratio increased at least as rapidly in the
1940-1980 period as in 1980-2020. Moreover, the US economy as a whole is large and thus more closed to trade.
Thus the current section emphasizes the role of regional integration within the US rather than the international
integration of the US with other countries.

74According to Holston et al. (2017), the US natural interest rate declined persistently from 1960 onwards.
75I am not using the real corporate rate for the pre-1980 period, as the US experienced high inflation before Volcker’s
disinflation policies around 1980. High inflation implies that the measured real rate was lower before 1980 than
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The key difference in this section compared to the previous sections is the integration ofN economies

into one: labor force L and the potential number of entrants Me are multiplied by N .76 Based on

the pro-growth effect of integration by Proposition 5, I estimate the degree of economic integration

N by targeting the TFP growth rate of 1.6% around 1960. Concentration, markup and labor share

remain non-targeted. Table 7 summarizes the related parameters for 1960.

Parameter Description Value Source

αt=1980/αt=1960 Change of research cost 7.93 Estimated from US aggregate
rt=1960 Interest rate 0.0669 External
N Magnitude of economic integration 3.96 Structural estimation

Table 7: Summary of parameters for 1960.

I compare the new travelling wave equilibrium of the integrated economy in 1980 with the old one

of segregated economies in 1960. As the N economies in 1960 are identical, the macro moments of

growth, concentration, markup and labor share are the same regardless of whether the N economies

are seen separately or together.

Figure 14 compares the equilibrium in 1960 with that in 1980. Similar to 12, growth declines for

all firms but especially for laggards, and the productivity distribution and sales distribution stretch

out to a heavier tail. Declining growth, like in the previous section, is due to the dominating role

of harder research despite the mitigating forces of a lower interest rate and larger market size.

The top 1% firm sales concentration increases by 14.43%, which is in the ballpark of the estimate

in Kwon et al. (2022) and slightly greater than the change from 1980 to 2020. As growth rates

in 1960 (this section) and in 1980 (Section 5.3) have been targeted, the increase in concentration

resonates with Proposition 4, which links fatter tail with lower growth regardless of market power.

Changes in markup and labor share, however, are largely attenuated. Table 8 shows that while

market share is reallocated towards high markup and low labor share firms as in the 1980-2020

period, the reallocation component is largely compensated by the within-firm component due to

economic integration. As integration increases the number of firms competing with each other, in

a purely static setting it reduces within-firm markups more than it reallocates markups towards

higher-markup firms because the equilibrium log-productivity distribution is overall log-concave.77

The net effect of integration is thus a reduction of markup and can act as a compensating force

against higher markup due to the endogenous fatter tail. The combined effect of integration and

harder research means strongly attenuated markup and labor share changes, despite a slightly

higher increase in concentration. To summarize, the dynamic growth effect of harder research and

afterwards, even though the natural interest rate was higher before 1980.
76Aggregating N representative consumers into one is feasible, as the Kimball preference is homothetic and hence
belongs to the Gorman form.

77See further discussions in Section 5.4.
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(c) log(PDF) of log(PθỸθ) (d) Markup µ

Figure 14: Comparison between 1960 and 1980. Panel (a): innovation intensity; Panel (b): log PDF
of log productivity; Panel (c): log PDF of log sales; Panel (d): cost-weighted markup distribution.

the static effect of economic integration jointly reconcile fatter Pareto tails with the stable markup

and labor share. The stable labor share in this context is not understood as an economic regularity

as in Kaldor (1961), but rather as a historical coincidence. Such an analysis is only possible with a

framework in which a well-defined Pareto-tailed productivity distribution is endogenously generated

by firm-specific growth. The model provides a way to study the question in a unified setting.

8 Extended Model with Incumbent Learning

I now generalize the model to allow for incumbent learning. Incumbent firms can not only conduct

innovation on a stand-alone basis but also learn from other firms. Learning improves a firm’s

productivity in a quicker fashion. It captures learning-by-doing (Arrow (1962)), technology diffusion
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Within Between Net entry Total

∆Markup −6.18% 9.00% −0.41% 2.41%

∆Labor share 3.24% −4.39% 0.16% −0.99%

Table 8: Melitz-Polanec decomposition of markup and labor share changes between 1960 and 1980.

(Aghion et al. (2001)), technology adoption (Comin and Gertler (2006)) or imitation (König et al.

(2022)). This section shows that all the results hold true in the extended model if both innovation

and learning become more difficult over time to reflect more difficult knowledge.

Denote λl,θ as the Poisson rate of learning success and assume the learning cost Rl,θ to be the same

quadratic function as 28:

Rl,θ = R(λl,θ; ãθ) =
1

2
αeβãθλ2l,θA (52)

Similar to the entrant’s learning cost function, the factor eβãθ reflects the more difficult knowledge

to be learned at higher levels of technology, irrespective of how effective an incumbent can be

matched with a more productive firm. See Appendix D for a more detailed discussion. If learning

is successfully realized with Poisson rate λl,θ, the firm’s log productivity jumps to a higher level

according to a PDF ψl,θ. The process takes a similar form of matching as that of entry. If Poisson

rate λl,θ is realized, firm aθ is randomly matched with an incumbent firm with log productivity aj .
78

If aj ≤ aθ, no learning occurs (Figure 15a). If aj > aθ, then firm θ jumps to position aψ ∈ [aθ, aj ]

according to the PDF ψ(aψ; aθ, aj):

ψ(aψ; aθ, aj) = kψe
−kψ(aψ−aθ) + e−kψ(aj−aθ)δaj (aψ) (53)

Figure 15b illustrates such matching with a more productive firm. The only difference from entry

is that the firm now starts from position aθ, instead of from a. Integrating over all possible draws

of aj to get the learning outcome distribution ψl:

ψl(aψ; aθ, ϕ) =

∫ +∞

aθ

ψ(aψ; aθ, aj)ϕ(aj) daj

= [kψΦ(aψ) + ϕ(aψ)]e
−kψ(aψ−aθ), ∀aψ > aθ (54)

I have included aθ and ϕ in the parentheses of ψl to emphasize that the latter depends on the

origin of the jump and the existing distribution. By construction, ψl(aψ; aθ, ϕ) = 0 for aψ < aθ and

ψl(aψ; aθ, ϕ) = Φ(aθ)δaθ(aψ) for aψ = aθ, where δaθ is the Dirac mass function at point aθ. The

latter comes from the fact that all draws from the left of aθ result in firm θ staying at aθ. Taken

78The draw is not conditional on the drawn firm being more productive than the learning firm, i.e. the learning
firm does not target more productive firms for the draw. While this is a typical assumption in the literature (see
Buera and Lucas Jr (2018) for a review), one can consider an alternative model in which learning targets only
more productive firms like in Chen (2022). As long as learning is imperfect, the results remain robust except that
firms may never choose innovation: as learning is very effective even for leaders, they also choose learning over
innovation.
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(a) Matching with a less productive firm

aθ aj

aψ ∈ (aθ, aj ]PDF

(b) Matching with a more productive firm

Figure 15: Illustration of incumbent learning.

together,

ψl(aψ; aθ, ϕ) = [kψΦ(aψ) + ϕ(aψ)]e
−kψ(aψ−aθ)1(aθ,+∞)(aψ) + Φ(aθ)δaθ(aψ), ∀aψ ≥ a (55)

where 1 is the indicator function. It is easy to check that 55 integrates into 1 so that it is a well-

defined PDF.

To make the notation succinct, denote the respective destination PDF of innovation as:

ψi(aψ; aθ) = δaθ+q(aψ) (56)

where δaθ+q is the Dirac mass function at aθ + q.

If the log-productivity distribution ϕ has an exponential tail, which is the relevant case for my

model, then ψl,θ is also exponentially tailed. Learning thus allows a firm to jump far ahead and

improve its productivity more quickly than innovation. Equation 55 also makes clear that learning

is not an easy process however: a productive firm finds it difficult to be matched with another

one which is even more productive. The probability of such a match, 1 − Φ(aθ), decreases and

approaches 0 when aθ → +∞.

At a specific time, an incumbent chooses only innovation or learning as its growth strategy, as

well as the Poisson intensity of that strategy. We shall once again consider a travelling wave

equilibrium and use a tilde to denote normalization. The HJB equation of each incumbent in such

an equilibrium now becomes:

(r − g)Ṽ = max
c, λc

{
Π(ãθ; ϕ̃

M )− f − R̃(λc; ãθ) + F̃ Ṽ
}

(57)
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with the same boundary condition as in 42, where

F̃ Ṽ =
[
−1

2
ν2−g

]
Ṽ ′(ãθ)+

1

2
ν2Ṽ ′′(ãθ)+λc(ãθ)

∫
R

[
Ṽ (ãψ)−Ṽ

]
ψc(ãψ; ãθ, ϕ̃) dãψ−λd(ãθ; ϕ̃M )Ṽ , (58)

R̃(λc; ãθ) =
1

2
αeβãθλ2c , (59)

c(ãθ) ∈ {i, l} is the choice between innovation i and learning l and I have used the shorthand c

to simplify the notation, ψc is the destination PDF of innovation (c = i) or learning (c = l). For

succinctness, I have slightly abused the notation and used ψi(ãψ; ãθ, ϕ̃) to represent ψi(ãψ; ãθ), even

though ψi does not depend on ϕ̃.

Given the same cost function of innovation and learning, choice c is based on the expected value

gain of each strategy:

c∗(ãθ) =

i, if
∫
R Ṽ (ãψ)ψi(ãψ; ãθ) dãψ ≥

∫
R Ṽ (ãψ)ψl(ãψ; ãθ, ϕ) dãψ

l, otherwise.
(60)

The entrants’ problem remains the same as in equation 44. Given the choice of c, λc and λe, the

KF equation now becomes:

0 = (
1

2
ν2 + g)ϕ̃′ +

1

2
ν2ϕ̃′′ − λd(ãθ; ϕ̃

M )ϕ̃(ãθ) +
λeMe

M
ψe(ãθ; ϕ̃)

+

∫
(ã,ãθ)

λc(ãψ)ϕ̃(ãψ)ψc(ãθ; ãψ, ϕ̃) dãψ − ϕ̃(ãθ)λc(ãθ)

∫
(ãθ,+∞)

ψc(ãψ; ãθ, ϕ̃) dãψ (61)

with the same boundary condition as in 47. The last two terms are different from the baseline model

and correspond respectively to inflows into ãθ and outflows from ãθ due to innovation/learning.

Appendix F.9 shows that the KF equation 61 can be equally written in the form of equation 46,

where F̃⊺ is now the adjoint operator of the one defined in 58. The balanced entry/exit condition,

zero profit net of fixed cost at the left boundary, and aggregate growth g have the same form as in

Definition 1.

Given the similar specification of incumbent learning as that of entry, a non-interference condition

under imperfect learning also holds for incumbent learning. Proposition A8 in Appendix E.2 states

and proves the result. Like in the baseline model, these non-interference conditions are key for

proving the unique tail index of the equilibrium productivity distribution. Appendix G.2 proves

the counterpart of Proposition 4 under the extended model. Proposition 5 on market size expansion

remains valid under the extended model. All the externally calibrated parameters remain the same

as in the baseline model, and the structural estimation follows the same procedure as in Section 5.

Figure 16 shows some results of the travelling wave equilibrium in 1980 under the extended model.
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(a) λc (b) ϕ̃

Figure 16: Travelling wave equilibrium of 1980 in the extended model.

Notes: ãθ is a firm’s log productivity. Aggregate log productivity is normalized to 0. Panel (a): incumbent
learning (c = l) or innovation (c = i) intensity. Solid lines represents the choice between learning and
innovation, as well as their intensity; dotted lines indicate the growth strategy (l or i) is not chosen but show
the intensity had the firm been forced to use the strategy. Panel (b): log-productivity distribution.

Figure 16a displays the optimal learning (c = l) and innovation (c = i) intensities of incumbent

firms where solid lines indicate the actual choices of firms. There is a cutoff log productivity above

which firms choose innovation over learning and vice versa. Dotted lines represent the hypothetical

optimal intensities if firms are forced to use a strategy (i.e. innovation or learning) which is not

optimally chosen. The overall innovation intensity, i.e. hypothetical for laggards and actual for

leaders, shows a similar inverted-U relationship as that in the baseline model. The overall learning

intensity is decreasing in firm’s productivity, as productive firms find it difficult to be matched with

more productive firms, and learning also becomes more difficult with more advanced knowledge.

Since I assume a higher cost for both learning and innovation for more productive firms, such firms’

optimal choice of innovation over learning reflects the difficulty of being matched with even more

productive firms. As innovation is conducted on a stand-alone basis, it allows a leader to stretch

out the technological frontier without being restrained by existing knowledge, and is thus more

effective than learning for a leader. Figure 16b shows the equilibrium log-productivity distribution

with an exponential tail similar to that in the baseline model.

As knowledge becomes more difficult to acquire over time, I calibrate the same increase in α from

1980 to 2020 as in the baseline model, which uniformly increases learning, innovation and entry

costs. Appendix J shows comparative statics across the two travelling wave equilibria and calculates

moment changes. All the results remain robust under the extended model.
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9 Conclusion

The present study constructs a continuous-time Schumpeterian growth model which complements

the existing literature by emphasizing how growth shapes market structure. From a methodological

point of view, the model benefits from the recently developed Mean Field Game to generate an

equilibrium productivity distribution with Pareto tail. As ideas are getting harder to find, the

distribution shifts to a heavier tail and the market becomes more concentrated. The model explains

a majority of the changes in growth, concentration, markup, labor share, R&D cost, entry and exit

rates, and job creation and destruction rates in the US in the last four decades. The explanation

is compatible with the growth decline and increasing concentration in a longer historical horizon.

The framework can accommodate fatter a Pareto tail with stable markup and labor share in the

pre-1980 period by introducing economic integration in addition to harder research. It strives to

provide a unified explanation linking key macroeconomic moments, and suggests more difficult

knowledge as the “fundamental cause” in the words of Grossman and Oberfield (2022).

Changing the perspective from how market structure determines growth to how growth determines

market structure implies dramatically different policy recommendations. In particular, anti-trust

policies are generally not key for promoting growth, contrary to what most papers in the literature

suggest. In the model, higher market power actually encourages growth and mitigates harder

research, as firms reap higher profits. Undoubtedly, anti-trust policies can still be pro-growth in

specific cases where the traditional Schumpeterian logic of higher concentration prohibiting growth

is present, or should be applied for ethical and social considerations when they are justified. But

growth policies should center around promoting technological opportunities for every firm, large or

small. This approach is reminiscent of the East Asian Miracles which involved strong development

policies designed by the government.79 Even though the model cannot fully speak to that history,

as the catch-up growth of these countries involves capital accumulation and learning from foreign

countries which are outside the model’s scope, it shares the same focus of promoting technology

to encourage growth. In the case of the US, Antolin-Diaz and Surico (2022) shows that military

spending increases productivity in the long run through public R&D. Gruber and Johnson (2019)

interprets the post-war experience of the US in a similar fashion, suggesting policy implications

centering around public R&D. This framework can hopefully open the door for further fruitful

discussions.
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Appendix

Format Conventions

Sections with Arial font demarcated by an upper and a lower line explain the mathematical in-
tuitions behind the propositions. While the propositions are more general, these sections give
specific examples to illustrate the propositions. They also give a sense of direction for the proofs.
Readers not interested in the proofs can gain intuitions through these examples.

Algorithms are in boxes with typewriter font.

A Empirical evidence

A.1 Methodology

While TFP growth cannot be negative in the model, it can be negative in the data, especially for

more recent periods at the sectoral level. This causes a considerable problem for the definition of

research productivity as the economic intuition does not coincide with the mathematical definition:

given a negative growth rate, a higher research input suggests lower research productivity according

to economic reasoning, but the ratio of growth/research input goes up because of the negative sign.

Moreover, the ratio is negative so we cannot take the log of it, while it is the log level that matters

in the model. To make the mathematical definition consistent with economic intuition, I define

the “generalized log”, or glog, which extends the definition and monotonicity to the domain of R.
The function considers a growth rate very close to 0 as being indifferent from 0, and is similar to

winsorization in the applied microeconomics literature. Formally, choose a small g0 > 0 and let:

glog(g) =


log(g)− log(g0), if g > g0

0, if − g0 < g ≤ g0

− log(−g) + log(g0), if g ≤ −g0.

Figure A1 shows an illustration. The idea is simply that a growth rate sufficiently close to 0 in

the data should be regarded as indifferent from 0. In mathematics, however, limg→0+ log(g) = −∞
which is irrelevant for the economic intuition. Thus for g ∈ (−g0, g0), where g0 is a small positive

number, glog(g) should be given a constant value which I normalize to 0. When g > g0, the

usual log function applies, with only a parallel shift of − log(g0) to ensure monotonicity between

(−g0, g0) and (g0,+∞). Finally, I can apply a similar log transformation for g < −g0 while ensuring
monotonicity on g ∈ R.
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Figure A1: glog(g) with g0 = e−6

In the model, R&D cost is a quadratic function of growth, i.e. R = Cg2 for some C > 0. The

quadratic cost function is a typical assumption in Schumpeterian growth models which matches the

elasticity of R&D with respect to the user costs of around -1.80 Rearranging the terms, g = C− 1
2R

1
2 ,

which is the form of the idea production function in Bloom et al. (2020) with decreasing returns

to research input. C− 1
2 is then the research productivity of the idea production function which I

shall denote IdeaProd, i.e. log(IdeaProd) = log(g)− 1
2 log(R).

In the data, research input R is always positive at the sector*period level. The definition of

log(g/R1/2) = log(g) − 1
2 log(R) for g > 0 can now be extended to g ∈ R by using l̃og(g/R1/2) =

glog(g) − 1
2 log(R), where I have used a tilde to emphasize the difference. l̃og(g/R) is monotone

in both g ∈ R and R > 0, making the mathematical monotonicity consistent with economic

intuition. I shall use g0 = e−6 for the following results. Correlations remain robust under alternative

specifications of g0.

A.2 Robustness check

This section shows that the correlations are robust under an alternative assumption of constant

returns to scale in the idea production function, or with alternative ways of dividing historical

periods, or with alternative values of threshold g0.

Divide the history since 1987 into three periods instead: 1987-1996, 1997-2006, 2010-2019. We

have excluded the Great Recession in this alternative division and each period comprises 10 years.

80See Bloom et al. (2002), Acemoglu et al. (2018) and Akcigit and Kerr (2018).
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(1) (2) (3) (4) (5)
Growth Concentration Ebit/Sales 4 Ebit/Sales 8 Labor Share

log(IdeaProd) 0.403∗∗∗ -5.147∗∗∗ -0.980∗∗ -1.123∗∗ 2.738∗∗

(0.0824) (1.675) (0.413) (0.427) (1.029)

N 99 99 99 99 99
Within R2 0.137 0.166 0.0954 0.135 0.0840
Period Fixed Effect Yes Yes Yes Yes Yes

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A1: Regressions of TFP growth and market structure indicators on log research productivity,
with alternative time period division (1987-1996, 1997-2006, 2010-2019).

(1) (2) (3) (4) (5) (6) (7)
Entry Exit Entry Exit Job Job Job
(num) (num) (job) (job) Creation Destruction Reallocation

log(IdeaProd) 0.559∗∗ 0.656∗∗∗ 0.461∗∗∗ 0.451∗∗∗ 0.955∗∗∗ 0.971∗∗∗ 1.908∗∗∗

(0.254) (0.183) (0.160) (0.0965) (0.295) (0.210) (0.486)

N 99 99 99 99 99 99 99
Within R2 0.0559 0.119 0.0909 0.137 0.0805 0.120 0.112
Period Fixed Effect Yes Yes Yes Yes Yes Yes Yes

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A2: Regressions of business dynamism indicators on log research productivity, with
alternative time period division (1987-1996, 1997-2006, 2010-2019).

Tables A1 and A2 show that the correlations are robust.

The second robustness check modifies the definition of research productivity: the idea production

function is assumed to feature constant returns to scale as in the baseline setting of Bloom et al.

(2020). Tables A3 and A4 show that the correlations are robust.

Thirdly, I use a different threshold g0 = e−5 for defining the generalized log. Tables A5 and A6

show that the correlations are robust.

Finally, I adjust the sectoral R&D expenditure aggregated from Compustat firm-level data by

the total employment share of Compustat firms per sector.81 Tables A7 and A8 show that the

correlations are robust.

81The share can be larger than 1, as Compustat is reported at the group level.
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(1) (2) (3) (4) (5)
Growth Concentration Ebit/Sales 4 Ebit/Sales 8 Labor Share

log(IdeaProd) 0.0509 -3.976∗∗∗ -0.475 -0.562∗ 1.922∗∗∗

(0.0763) (0.944) (0.304) (0.312) (0.626)

N 132 132 132 132 132
Within R2 0.00607 0.306 0.0657 0.0959 0.127
Period Fixed Effect Yes Yes Yes Yes Yes

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A3: Regressions of TFP growth and market structure indicators on log research productivity,
with constant returns to scale of the idea production function.

(1) (2) (3) (4) (5) (6) (7)
Entry Exit Entry Exit Job Job Job
(num) (num) (job) (job) Creation Destruction Reallocation

log(IdeaProd) 0.439∗∗ 0.390∗∗∗ 0.304∗∗ 0.238∗∗∗ 0.673∗∗∗ 0.520∗∗∗ 1.195∗∗∗

(0.180) (0.131) (0.120) (0.0831) (0.221) (0.188) (0.395)

N 132 132 132 132 132 132 132
Within R2 0.107 0.124 0.121 0.112 0.123 0.102 0.133
Period Fixed Effect Yes Yes Yes Yes Yes Yes Yes

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A4: Regressions of business dynamism indicators on log research productivity, with constant
returns to scale of the idea production function.

(1) (2) (3) (4) (5)
Growth Concentration Ebit/Sales 4 Ebit/Sales 8 Labor Share

log(IdeaProd) 0.156 -8.111∗∗∗ -0.853 -1.020 3.853∗∗

(0.108) (1.782) (0.612) (0.621) (1.408)

N 132 132 132 132 132
Within R2 0.0142 0.318 0.0529 0.0789 0.128
Period Fixed Effect Yes Yes Yes Yes Yes

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A5: Regressions of TFP growth and market structure indicators on log research productivity,
with g0 = e−5.
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(1) (2) (3) (4) (5) (6) (7)
Entry Exit Entry Exit Job Job Job
(num) (num) (job) (job) Creation Destruction Reallocation

log(IdeaProd) 0.894∗∗ 0.804∗∗∗ 0.583∗∗ 0.484∗∗ 1.345∗∗∗ 1.083∗∗ 2.400∗∗∗

(0.393) (0.294) (0.254) (0.183) (0.486) (0.413) (0.853)

N 132 132 132 132 132 132 132
Within R2 0.111 0.132 0.111 0.116 0.122 0.110 0.134
Period Fixed Effect Yes Yes Yes Yes Yes Yes Yes

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A6: Regressions of business dynamism indicators on log research productivity, with g0 = e−5.

(1) (2) (3) (4) (5)
Growth Concentration Ebit/Sales 4 Ebit/Sales 8 Labor Share

log(IdeaProd) 0.706∗∗∗ -1.218 -0.651∗ -0.706∗ 1.152
(0.140) (1.700) (0.364) (0.389) (1.202)

N 132 132 132 132 132
Within R2 0.361 0.00887 0.0381 0.0468 0.0141
Period Fixed Effect Yes Yes Yes Yes Yes

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A7: Regressions of TFP growth and market structure indicators on log research productivity,
with adjusted Compustat R&D data.

(1) (2) (3) (4) (5) (6) (7)
Entry Exit Entry Exit Job Job Job
(num) (num) (job) (job) Creation Destruction Reallocation

log(IdeaProd) 0.404 0.572∗∗∗ 0.355∗ 0.410∗∗∗ 0.563 0.776∗∗ 1.355∗∗

(0.284) (0.197) (0.175) (0.111) (0.385) (0.289) (0.656)

N 132 132 132 132 132 132 132
Within R2 0.0280 0.0827 0.0512 0.103 0.0266 0.0700 0.0530
Period Fixed Effect Yes Yes Yes Yes Yes Yes Yes

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A8: Regressions of business dynamism indicators on log research productivity, with adjusted
Compustat R&D data.
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B Additional materials for the illustrative model

B.1 Derivations for the equilibrium distribution

The Kolmogorov Forward (KF) equation associated with stochastic process 2 determines the

equilibrium distribution ϕ̃:

0 = (
1

2
ν2 + g)ϕ̃′(ã) +

1

2
ν2ϕ̃′′(ã) + λ(ã− q)ϕ̃(ã− q)− λ(ã)ϕ̃(ã) (A1)

On the right hand side of the equation, the first two terms correpond to the dt term and the dBθ,t

term of the stochastic process. λ(ã−q)ϕ̃(ã−q) captures the inflow into position ã from position ã−q
due to innovation, while λ(ã)ϕ̃(ã) captures outflow from position ã. The net effect of all the terms

on the right hand side is 0 as we are considering a stationary distribution after normalization. No

boundary condition is needed for the KF equation at the model level, as the optimal Poisson rate of

innovation λ(ã) satisfies limã→−∞ λ(ã) = +∞ and limã→+∞ λ(ã) = 0 if β > σ−1.82 Thus the least

productive firms on average grow more quickly than aggregate growth, while the most productive

ones grow less quickly: this drives the mean reversion when log productivities are normalized by g

per period, so that a stationary distribution ϕ̃ emerges.

As q is small, equation A1 can be approximated by

0 = (
1

2
ν2 + g)ϕ̃′(ã) +

1

2
ν2ϕ̃′′(ã)− q

d[λ(ã)ϕ̃(ã)]

dã
(A2)

One can use the guess-and-verify method to see that equation 3 is the solution.

B.2 Further empirical evidence

Figure A2 is a counterpart of Figure 4a and disaggregates laggards into small (< 5 employees) and

medium (5− 500 employees) firms. The growth decline of medium firms is more pronounced than

that of large firms, allowing large firms to stretch out further to the right tail.

C Derivations for the demand system

C.1 Utility maximisation

The representative consumer with Kimball preference solves the following optimisation problem:

max
Y,{Yθ}0≤θ≤1

log(Y )

82At the algorithm level, two boundary conditions (one on the left end, the other one on the right end of the
distribution) are still needed, as a computer can only handle finite segments. A natural choice is a reflecting
barrier: if a firm’s log productivity goes beyond the barrier, it is brought back to the barrier.
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Figure A2: High growth among small, medium and large firms

s.t.

M

∫ 1

0
γ(
Yθ
Y

) dθ = 1

M

∫ 1

0
PθYθ dθ ≤ wL+Π

where Π is total profits from firms. Define the Lagrangian multiplier:

L = log(Y ) + λ1(M

∫ 1

0
γ(
Yθ
Y

) dθ − 1) + λ2(wL+Π−M

∫ 1

0
PθYθ dθ)

First order conditions:

∂L
∂Yθ

= λ1Mγ′(
Yθ
Y

)
1

Y
− λ2MPθ = 0

∂L
∂Y

=
1

Y
− λ1M

∫ 1

0
γ′(

Yθ
Y

)
Yθ
Y 2

dθ = 0

Define two price indices P = λ1
λ2Y

and ζ = λ1 = [M
∫ 1
0 γ

′(YθY )YθY dθ]−1. Rewrite the FOCs in terms
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of P and ζ. Then

γ′(
Yθ
Y

) =
Pθ
P

M

∫ 1

0
PθYθ dθ =

P

ζ
Y

C.2 Proof of proposition 2

Proof. 1. By 11, it is clear that ∂σ
∂zθ

< 0, it suffices to show ∂zθ
∂aθ

> 0.

In fact, combining equations 6 and 14 gives:

γ′(Zθ)

MCθ/P
=

σ(zθ)

σ(zθ)− 1

which is an implicit function of Zθ with respect to aθ. Take the first derivative w.r.t. aθ and

rearrange the terms to give:

∂Zθ
∂aθ

[
γ′′(Zθ)(1− σ−1) + γ′(Zθ)σ

−2 ∂σ

∂Zθ

]
= −MCθ

P

Using equations 9 and 14 to recollect terms, this simplifies to:

∂Zθ
∂aθ

=
σ(σ − 1)
σ−1
Zθ

− ∂σ
∂Zθ

or
∂zθ
∂aθ

=
σ(σ − 1)

σ − 1− ∂σ
∂zθ

(A3)

It suffices to note σ > 1 and ∂σ
∂zθ

< 0 to see ∂zθ
∂aθ

> 0

2. By definition, the passthrough is:

∂ log(Pθ)

∂ log(MCθ)
= −∂ log(Pθ/P )

∂aθ

= −∂ log(Pθ/P )
∂zθ

∂zθ
∂aθ

=
1

1 +
− ∂σ
∂zθ
σ−1

(A4)

where we have used equation A3.

To show ∂ log(Pθ)
∂ log(MCθ)

is a U-shaped function of aθ, we only need to show it is a U-shaped function

of zθ, or equivalently,
− ∂σ
∂zθ
σ−1 is a hump-shaped function of zθ. It is easy to check that

− ∂σ
∂zθ
σ−1 is
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the markup elasticity to price − ∂ logµθ

∂ log
Pθ
P

. Taking the derivative with respect to zθ gives:

∂

∂zθ
(−∂ logµθ
∂ log Pθ

P

) = −∂
2σ

∂z2θ

1

σ − 1
+ (

∂σ

∂zθ
)2

1

(σ − 1)2

Under the logistic specification of equation 11,

∂σ

∂zθ
= −k (σ − σ)(σ − σ)

σ − σ

∂2σ

∂z2θ
= k

2σ − (σ + σ)

σ − σ

∂σ

∂zθ

Thus
∂

∂zθ
(−∂ logµθ
∂ log Pθ

P

) = − 1

(σ − 1)2
∂σ

∂zθ

k

σ − σ

[
σ2 − 2σ + σ + σ − σσ

]
The quadratic term in the last bracket has two roots 1±

√
(σ − 1)(σ − 1), only one of which

is within the range of (1,+∞). Thus ∂
∂zθ

(− ∂ log µθ

∂ log
Pθ
P

) < 0 for σ ∈ (σ, 1+
√
(σ − 1)(σ − 1)) and

> 0 for σ ∈ (1 +
√

(σ − 1)(σ − 1), σ). Thus − ∂ logµθ

∂ log
Pθ
P

is a U-shaped function of σ. Because σ

is monotonically decreasing in zθ, − ∂ log µθ

∂ log
Pθ
P

is hump-shaped in zθ.

3. First note that
∂σ

∂zθ
= −(σ − σ)(σ − σ)

σ − σ
k

Inserting it into A3, we get:

∂zθ
∂aθ

=
σ

1 + (σ−σ)(σ−σ)
(σ−σ)(σ−1)k

≥ σ

1 + (σ−σ)2
(σ−σ)(σ−1)k

=
σ

1 + σ−σ
σ−1k

(A5)

The last is a positive constant. Hence limaθ↑+∞ zθ = +∞. This result, together with the

fact that zθ is strictly increasing in aθ, means that we do not need to distinguish between

aθ → +∞ and zθ → +∞.

By A3,

∂aθ
∂zθ

=
1

σ
− 1

σ(σ − 1)

∂σ

∂zθ

=
1

σ
+ (σ − σ)

[
− 1

σσ
+

σ − σ

σ(σ − 1)(σ − σ)
k
]
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Denote the term in squared brackets to be f(zθ), i.e. f(zθ) = − 1
σσ + σ−σ

σ(σ−1)(σ−σ)k. Then

lim
zθ→+∞

f(zθ) =
(k − 1)σ + 1

σ2(σ − 1)

Moreover,

σ − σ = (σ − σ)
exp(−kzθ)

1 + exp(−kzθ)
≤ C exp(−kzθ)

for some constant C > 0 as zθ → +∞.

Thus

|(σ − σ)f(zθ)| ≤ C exp(−kzθ)

for another positive constant C > 0 and when zθ is sufficiently large. Denote z∗ to be one

point above which the inequality holds. Denote a∗ to be the corresponding log productivity.

Then ∀zθ > z∗,
1

σ
− C exp(−kzθ) ≤

∂aθ
∂zθ

≤ 1

σ
+ C exp(−kzθ)

Together with aθ = a∗ +
∫ zθ
z∗

∂aθ
∂zθ

(z) dz, we get:

aθ ≥ a∗ +
1

σ
(zθ − z∗) +

C

k
[exp(−kzθ)− exp(−kz∗)] ≥ a∗ +

1

σ
(zθ − z∗)− C

k
exp(−kz∗),

aθ ≤ a∗ +
1

σ
(zθ − z∗)− C

k
[exp(−kzθ)− exp(−kz∗)] ≤ a∗ +

1

σ
(zθ − z∗) +

C

k
exp(−kz∗)

Thus there is some C1 ∈ R and C2 ∈ R such that aθ ∈ [ 1σzθ + C1,
1
σzθ + C2] for sufficiently

large zθ, which implies Aθ ∼ O(Z
1
σ

θ ) or equivalently Zθ ∼ O(A
σ
θ ) as aθ → +∞.

To show the stronger result of Aθ ∼ CZ
1
σ

θ as zθ → +∞, first note that Aθ

Z
1
σ
θ

is bounded as

Aθ ∼ O(Z
1
σ

θ ). This means that we only need to show Aθ

Z
1
σ
θ

is ultimately monotone. In fact,

Aθ

Z
1
σ

θ

= exp
(
aθ −

1

σ
zθ

)
= exp

(
a∗ +

∫ zθ

z∗

∂aθ
∂zθ

(z) dz − 1

σ
zθ

)
= exp

(
a∗ +

∫ zθ

z∗
(σ − σ)f(z) dz − 1

σ
z∗
)

If the limit of f(zθ),
(k−1)σ+1
σ2(σ−1)

, is positive, then the integrand is always positive for sufficiently

large z. This means that we can modify the choice of z∗ such that f(z) > 0 for all z > z∗,

in addition to the requirement above. Then it is clear that Aθ

Z
1
σ
θ

is increasing for all zθ > z∗.
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Similarly, if the limit of f(zθ) is negative, then
Aθ

Z
1
σ
θ

is ultimately decreasing.

In the case where limzθ→+∞ f(zθ) = 0, (k − 1)σ + 1 = 0. Plug this relationship into the

definition of f :

f(zθ) = − 1

σσ
+

σ − σ

σ(σ − 1)(σ − σ)

σ − 1

σ

=
σ − σ

σσ(σ − σ)
< 0

Thus Aθ

Z
1
σ
θ

is ultimately decreasing.

In summary, Aθ

Z
1
σ
θ

is ultimately monotone and Aθ ∼ CZ
1
σ

θ for some positive constant C.

In order to show PθYθ ∼ CA
σ−1
θ as aθ → +∞, it suffices to show γ′(Zθ)Zθ ∼ CA

σ−1
θ . This

can be easily seen as by definition γ′(Zθ) ∼ CZ
− 1
σ

θ when Zθ → +∞. Hence

γ′(Zθ)Zθ ∼ CZ
1− 1

σ

θ ∼ CA
σ−1
θ as aθ → +∞

Finally, it is easy to see Lθ =
Yθ
Aθ

∼ C Zθ
Aθ

∼ CA
σ−1
θ as aθ → +∞.

This concludes our proof.

D Micro-foundation of the learning cost function

This section gives more texture to the entrants’ learning cost function 21 with αe = αeβã and the

incumbents’ learning cost function 52. Recall that in the case of innovation, I have used eβãθ for

adjusting the innovation cost in a cross section of firms. The adjustment factor depends on ãθ, as

innovation is a marginal improvement when q is small and thus is local in nature. Why do I use the

same factor eβãθ for adjusting the difficulty of learning, despite the fact that learning is non-local?

We have derived the learning destination distribution ψl(aψ; aθ, ϕ) in 55 by matching with incum-

bent firms and imperfect learning from the latter. Once the specification is laid down, it can

be equally regarded as jumping according to the distribution ψl, without reference to a specific

aj to be learned from.83 Viewed in this way, if the learning firm aθ happens to jump to aψ,

it jumps with certainty. We start by considering learning costs along the learning path to a

83An analogy with fields in physics may better clarify the point. An electric field can be generated by electrically
charged particles. Once the field is established, its force exerted on other charged particles in the field can be
analyzed by taking the field as the object of study, without reference to the particles that generate the field.
Similarly, ψl is the “learning field” generated by incumbent firms.
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specific aψ and investigating related properties, then consider the more general case with a non-

degenerate distribution of learning destination. Like in Section 4.2.3, I interpret the learning jump

as consecutive marginal improvements: if firm with log-TFP aθ jumps to aψ due to learning, then

it moves up to aψ by incremental steps. A local learning cost of factor eβãkdak is incurred at each

position ak ∈ [aθ, aψ], where constants have been omitted to focus on the harder learning effect in

the cross section. The total learning cost from aθ to aψ is adjusted by:∫ aψ

aθ

eβãk dak = C(eβãψ − eβãθ) = Ceβãθ(eβ(ãψ−ãθ) − 1)

where eβãθ reflects the local adjustment due to harder learning, and eβ(ãψ−ãθ) − 1 reflects an

additional adjustment due to the distance of jump.

Based on the above argument, suppose for the moment a learning function with the formR(aθ, aψ) =
1
2α(e

βãψ − eβãθ)λ2, where α is some positive constant. If λ is realized, then aθ moves with certainty

to aψ. Denote E(Aθ,t+∆t) = λ∆tAψ + (1− λ∆t)Aθ as the expected position after the realization of

λ. The following proposition says that such a cost function satisfies properties consistent with our

considered convictions:

Proposition A1.

1. If 0 < β < 2, then with the same cost, E(Aθ,t+∆t) is monotonically increasing with aψ. In

other words, with the same spending on learning, learning from a more productive firm is

more effective.

2. With the same cost and the same aψ, E(Aθ,t+∆t) is monotonically increasing with aθ. In other

words, if two firms learn from the same firm and incur the same cost, the more productive

firm among the two learning firms is expected to end up at a more productive position than

the other one.

Proof.

1. First note that

λ =
[ 2R

α(Ãβψ − Ãβθ )

] 1
2

(A6)

To prove the monotonicity, it suffices to prove the monotonicity of λ(Ãψ − Ãθ), i.e. the

monotonicity of

f(Ãψ) =
(Ãψ − Ãθ)

2

Ãβψ − Ãβθ

Its derivative is:

f ′(Ãψ) =
(Ãψ − Ãθ)Ã

β
ψ[2− β − 2 exp(−β(ãψ − ãθ)) + β exp(−(ãψ − ãθ))]

(Ãβψ − Ãβθ )
2
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To show f ′(Ãψ) > 0 for any Ãψ > Ãθ, it suffices to show that

g(x) = 2− β − 2 exp(−βx) + β exp(−x)

is positive for any x > 0.

Note that g(0) = 0, limx→+∞ = 2− β > 0. Moreover,

g′(x) = β(2 exp(−βx)− exp(−x))

is at first positive then negative on (0,+∞), meaning that g(x) is at first increasing then

decreasing on (0,+∞). It then follows that g(x) > 0 for any positive x and that we have

proved the monotonicity.

2. Let aj < ak < aψ. We want to prove that E(Aj,t+∆t) < E(Ak,t+∆t).

By equation A6, λj < λk, hence

E(Aj,t+∆t) = Aj + λj∆t(Aψ −Aj)

< Aj + λk∆t(Aψ −Aj)

= λk∆tAψ + (1− λk∆t)Aj

< λk∆tAψ + (1− λk∆t)Ak

= E(Ak,t+∆t)

The discussions above consider a specific destination of jump aψ. In the model, aψ comes from

some distribution. We need to integrate the cost factor eβãψ − eβãθ across aψ to obtain the relevant

adjustment factor of the learning cost function. Importantly, the factor should capture the difficulty

of learning irrespective of the actual learning destination ψl: if aθ1 < aθ2 and thus a higher

proportion of incumbents are situated above aθ1 than above aθ2 , such an effect should not be

captured by the cost factor. This ensures that the adjustment factor captures the difficulty of

knowledge and not the difficulty of being matched. In the case of aθ1 < aθ2 , to have the same

condition of learning, the learning destination distribution shifts in a parallel way to the right in

the case of θ2 compared to that of θ1.
84 I shall denote the hypothetical destination distribution as

f in order to emphasize its difference from the actual learning distribution ψl.

84Using the field analogy in the previous footnote, the hypothetical learning field relative to the learning firm is the
same in the two cases. This ensures that the cost factor captures the difficulty of knowledge and not a change of
the field.
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Given the above discussion, f should be a function of aψ − aθ, ∀aψ ≥ aθ. Then the cost factor is

given by: ∫ +∞

aθ

(eβãψ − eβãθ)f(aψ − aθ) daψ =

∫ +∞

aθ

(eβãψ − eβãθ)f(ãψ − ãθ) daψ

=

∫ +∞

ãθ

(eβãψ − eβãθ)f(ãψ − ãθ) dãψ

= eβãθ
∫ +∞

ãθ

(eβ(ãψ−ãθ) − 1)f(ãψ − ãθ) dãψ

= eβãθ
∫ +∞

0
(eβx − 1)f(x) dx

= Ceβãθ

Hence the adjustment factor of eβãθ in equation 52.

E Proof of non-interference conditions

As seen in the main text, the key is to prove

lim
x→+∞

ϕ(x)

Φ̄(x)
e(kψ−ks)x = +∞

for any ks < kψ and any ultimately monotone PDF ϕ with an infinite right endpoint. The ultimate-
monotonicity condition rules out pathological cases in which ϕ(x) touches 0 infinitely many times
as x → +∞, for example when an ordinary PDF is multiplied by 1 + sin(x). These strange cases
do not appear in practice and are assumed away.

As ϕ in the model has an infinite right endpoint, the propositions below show that it can only be
of two types: the Fréchet type and the Gumbel type. Take specific examples to understand the
intuition:

• For the Fréchet type, take a Pareto-tailed distribution with Φ̄(x) ∼ Cx−α and ϕ(x) ∼ Cαx−α−1

as an example. Then ϕ(x)
Φ̄(x)

e(kψ−ks)x = α e
(kψ−ks)x

x → +∞ as x→ +∞.

• For the Gumbel type, take the exponential-tailed distribution with Φ̄(x) ∼ Ce−αx and ϕ(x) ∼
Cαe−αx as an example. This turns out to be the case for the log-productivity distribution in
the model. Then ϕ(x)

Φ̄(x)
e(kψ−ks)x = αe(kψ−ks)x → +∞ as x→ +∞.

Propositions 3 and A8 establish the general result for any ultimately monotone distribution with an
infinite right endpoint. The result paves the way for proving Proposition 4 in the baseline model
or its counterpart in the extended model, which establishes the unique exponential tail of the
equilibrium log-productivity distribution. At the present stage, however, the equilibrium tail is not
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known a priori. The non-interference conditions are thus needed for any distribution, as long as
some weak conditions are satisfied.

The propositions used for proving Propositions 3 and A8 in this section can be found in Embrechts

et al. (2013). Their proof can be found in the book and references therein.

Proposition A2 (Fisher Tippett Theorem for Maximum Domain of Attraction, Embrechts et al.

(2013) Theorem 3.2.3). Let {Xn}n≤1 be a sequence of i.i.d. random variables. If there exist norming

constants cn > 0, dn ∈ R and some non-degenerate CDF H such that

c−1
n (Mn − dn)

L−→ H (A7)

where Mn = max({Xi}1≤i≤n), then H belongs to one of the following three types of distribution:

• Fréchet:

Φα(x) =

0, x ≤ 0

exp(−x−α), x > 0
α > 0

• Weibull:

Ψα(x) =

exp(−(−x)α), x ≤ 0

1, x > 0
α > 0

• Gumbel:

Λ(x) = exp(−e−x), x ∈ R

The theorem says that any distribution must belong to one to one of three types in the sense of A7,

if the norming constants exist. For practical purposes and following virtually all economics papers

using the theorem, I assume that the constants exist. Distributions that belong to the Fréchet

type constitute a family of distributions which is called the “Maximum Domain of Attraction”

of Φα and shall be denoted MDA(Φα). Similar notations are adopted for the other two types.

The Fisher-Tippett theorem can be seen as a counterpart to the Central Limit Theorem (CLT):

the maximum Mn is replaced by the sum Sn =
∑n

i=1Xi in the latter. Unlike the CLT, there

is no unique Maximum Domain of Attraction in the Fisher Tippett Theorem. Nonetheless, the

categorisation of any (i.e. both L2 and non-L2) distribution into only three types is very powerful

and becomes the basis of extreme value theory.

The notion of a slowly varying function is useful in the extreme value theory:

Definition A1 (Slow Variation and Regular Variation).

1. A function L : R → R+ is slowly varying at ∞, denoted as L ∈ R0, if ∀t > 0

lim
x→+∞

L(tx)

L(x)
= 1

74



2. A function L : R → R+ is regularly varying at ∞, denoted as L ∈ Rα where α ∈ R, if ∀t > 0

lim
x→+∞

L(tx)

L(x)
= tα

Roughly speaking, a regularly varying function behaves like xα as x → +∞. The intuitive idea

behind a slowly varying function is that it changes more slowly than any power function:

Proposition A3. If L ∈ R0, then

lim
x→+∞

xαL(x) =

+∞, if α > 0

0, if α < 0.

Proof. By definition, xαL(x) is a regularly varying function at ∞. It suffices to apply Corollary

A3.4 of Embrechts et al. (2013) to conclude.

Examples of slowly varying functions include functions that converge to a positive constant, log(x)

and 1/ log(x).

The following propositions fully characterize the Maximum Domain of Attraction of each type of

distribution. We shall denote F̄ (x) = 1− F (x) as the survival function of a distribution F .

Proposition A4 (Characterization of MDA(Φα), Embrechts et al. (2013) Theorem 3.3.7). A

distribution F belongs to MDA(Φα), α > 0, if and only if its survival function can be represented

as F̄ = x−αL(x) for some slowly varying function L.

Proposition A5 (Characterization of MDA(Ψα), Embrechts et al. (2013) Theorem 3.3.12). A

distribution F belongs to MDA(Ψα), α > 0, if and only if its right endpoint xF < +∞ and

F̄ (xF − x−1) = x−αL(x) for some slowly varying function L.

Proposition A6 (Characterization of MDA(Λ), Embrechts et al. (2013) Theorems 3.3.26 and

3.3.27). A distribution F with right endpoint xF ≤ +∞ belongs to MDA(Λ) if and only if there

exists some positive function a such that

lim
x↑xF

F̄ (x+ ta(x))

F̄ (x)
= e−t, t ∈ R

In particular, one can choose

a(x) =

∫ xF

x

F̄ (t)

F̄ (x)
dt, x < xF (A8)

which is absolutely continuous with respect to the Lebesgue measure and has density a′(x) with

limx↑xF a
′(x) = 0.
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The following proposition will be useful for characterizing monotone density functions whose

distributions belong to MDA(Φα):

Proposition A7 (Monotone Density Theorem, Embrechts et al. (2013) Theorem A3.7). Let

F̄ (x) =
∫ +∞
x f(y) dy where f is ultimately monotone (i.e. f is monotone on (z,+∞) for some

z > 0). If

F̄ (x) ∼ cx−αL(x), x→ +∞

with c > 0, α ∈ R and L ∈ R0, then

f(x) ∼ cαx−α−1L(x), x→ +∞

The following lemma is a variant of L’Hôpital’s rule. It can be easily proved using Cauchy’s Mean

Value Theorem, similar to the proof of L’Hôpital’s rule.

Lemma A1. If f(x) and g(x) are differentiable on (a,+∞), g′(x) ̸= 0 ∀x ∈ (a,+∞), limx→+∞ f(x) =

limx→+∞ g(x) = 0, and limx→+∞
f(x)
g(x) exists. Then limx→+∞

f ′(x)
g′(x) exists and

lim
x→+∞

f ′(x)

g′(x)
= lim

x→+∞

f(x)

g(x)

Proof. By a change of variable y = 1
x and define f̃(y) = f( 1y ) and g̃(y) = g( 1y ), the conditions

become: limy→0+ f̃(y) = limy→0+ g̃(y) = 0 and limy→0+
f̃(y)
g̃(y) exists. The result to be proven

becomes limy→0+
f̃ ′(y)
g̃′(y) = limy→0+

f̃(y)
g̃(y) . These two formulations are equivalent. We can redefine

f̃(0) = g̃(0) = 0 to ensure that f̃ and g̃ are continuously at y = 0.

Then according to Cauchy’s Mean Value Theorem, there exists a ξ ∈ (0, y) such that

f̃(y)

g̃(y)
=
f̃(y)− f̃(0)

g̃(y)− g̃(0)
=
f̃ ′(ξ)

g̃′(ξ)

for any y ∈ (0, 1a). Taking the limit of y ↓ 0+, we get:

lim
y→0+

f̃(y)

g̃(y)
= lim

y→0+

f̃ ′(ξ)

g̃′(ξ)
= lim

ξ→0+

f̃ ′(ξ)

g̃′(ξ)
= lim

y→0+

f̃ ′(y)

g̃′(y)

This completes the proof.

E.1 Non-interference condition of entry

We are now ready to prove Proposition 3.

Proof. As argued in the main text, it suffices to show

lim
x→+∞

ϕt(x)

Φ̄t(x)
e(kψ−ks)x = +∞
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if kψ − ks > 0.

I shall drop the time subscript for notational simplicity. Since ϕ has an infinite endpoint, the

distribution cannot belong to MDA(Ψα) and must belong to either MDA(Φα) or MDA(Λ)

according to the Fisher Tippett Theorem.

• If Φ ∈MDA(Φα),

then according to Proposition A4, Φ̄ = x−αL(x) for some slowly varying function L. Since ϕ

is ultimately monotone, we can use the monotone density theorem to get:

ϕ ∼ αx−α−1L(x), x→ +∞

Hence

ϕ(x)

Φ̄(x)
e(kψ−ks)x ∼ αx−α−1L(x)

x−αL(x)
e(kψ−ks)x =

αe(kψ−ks)x

x
→ +∞, as x→ +∞

• If Φ ∈MDA(Λ),

then according to Proposition A6, there exists a positive function a(x) with density a′(x)

having limx↑+∞ a′(x) = 0 such that

lim
x↑+∞

Φ̄(x+ ta(x))

Φ̄(x)
= e−t, t ∈ R (A9)

Fix a t < 0, then

Φ̄(x+ ta(x))

Φ̄(x)
=

Φ̄(x)− ta(x)ϕ(ξ(x))

Φ̄(x)
≤ 1− ta(x)ϕ(x+ ta(x))

Φ̄(x)

for some ξ(x) ∈ [x+ ta(x), x]. The inequality uses the ultimate monotonicity of ϕ.

Since limx↑+∞ a′(x) = 0, we know that ∀ϵ1 > 0, there exists a cutoff x0 such that |a′(x)| < ϵ1

∀x ≥ x0. Hence |a(x)− a(x0)| ≤ ϵ1(x− x0). Thus

Φ̄(x+ ta(x))

Φ̄(x)
≤ 1− t[a(x0) + ϵ1(x− x0)]ϕ(x+ ta(x))

Φ̄(x)
(A10)

By A9 and A10, there exists a sufficiently small ϵ2 > 0, such that for sufficiently large values

of x,

− t[a(x0) + ϵ1(x− x0)]ϕ(x+ ta(x))

Φ̄(x)
≥ e−t − 1− ϵ2 > 0
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Using Lemma A1, we get:

lim
x→+∞

ϕ(x)

ϕ(x+ ta(x))

1

1 + ta′(x)
= lim

x→+∞

Φ̄(x)

Φ̄(x+ ta(x))

⇒ lim
x→+∞

ϕ(x)

ϕ(x+ ta(x))
= et

Thus

ϕ(x)

Φ̄(x)
e(kψ−ks)x =

e(kψ−ks)x

−t[a(x0) + ϵ1(x− x0)]

−t[a(x0) + ϵ1(x− x0)]ϕ(x+ ta(x))

Φ̄(x)

ϕ(x)

ϕ(x+ ta(x))

→ +∞, as x→ +∞

E.2 Non-interference condition of incumbent learning in the extended model

Given the similar specification of incumbent learning as that of entry, a non-interference condition

also holds for incumbent learning. The case is slightly more complex than entry, as we need to

consider jumps from all aθ ∈ (a, aψ) when thinking about the inserted mass at aψ due to learning:

ψin
l (aψ;ϕ) ≜

∫
(a,aψ)

ψl(aψ; aθ, ϕ)ϕ(aθ)λl(aθ) daθ (A11)

Proposition A8 (Non-interference Condition of Incumbent Learning).

If ϕ is ultimately monotone, and if there exists k′ ∈ R such that λl(x) ∼ o(e−k
′x) as x→ +∞, then

limaψ→+∞
ψin
l (aψ ;ϕ)

ϕ(aψ)
eksaψ = 0, ∀ks < min{k′, kψ}.

In particular, if kψ > 0 and if λl(x) decreases at least exponentially with x, then limaψ→+∞
ψin
l (aψ ;ϕ)

ϕ(aψ)
=

0.

Remark:

1. In cases where leaders choose innovation over learning, there is a cutoff â such that λl(aθ) = 0,

∀aθ > â. Then k′ can take any real value and thus ks can be set to any number smaller than

kψ.

2. Cases where λl(x) ∼ O(e−klx) as x→ +∞ with kl > 0, i.e. λl(x) decreases exponentially, are

a special case of λl(x) ∼ o(e−k
′x) by considering k′ = kl − ϵ for any ϵ > 0. ks can be set to

any number smaller than min{k′, kψ}.
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Proof.

ψin
l (aψ)

ϕ(aψ)
eksaψ =

eksaψ

ϕ(aψ)

∫ aψ

a
[kψΦ(aψ) + ϕ(aψ)]e

−kψ(aψ−aθ)ϕ(aθ)λl(aθ) daθ

= [kψ
Φ(aψ)

ϕ(aψ)
+ 1]e(ks−kψ)aψ

∫ aψ

a
ekψaθϕ(aθ)λl(aθ) daθ

≤ [kψ
Φ(aψ)

ϕ(aψ)
+ 1]e(ks−kψ)aψC1

∫ aψ

a
e(kψ−k

′)aθ daθ

where the inequality arises from the fact that λl(aθ) ∼ o(e−k
′aθ) as aθ → +∞ and ϕ(aθ) is bounded.

Depending on whether kψ or k′ is larger, we consider three cases:

If kψ < k′, then the integral converges to a finite number as aψ → +∞. Hence by setting ks < kψ,

we prove the result by using the proof of Proposition 3.

If kψ = k′, then

ψin
l (aψ)

ϕ(aψ)
eksaψ ≤ [kψ

Φ(aψ)

ϕ(aψ)
+ 1]e(ks−kψ)aψC1(aψ − a)

= [kψ
Φ(aψ)

ϕ(aψ)
+ 1]e(ks−kψ+ϵ)aψC1e

−ϵaψ(aψ − a)

→ 0

by fixing an ϵ ∈ (0, kψ − ks) and by using the proof of Proposition 3.

If kψ > k′, then

ψin
l (aψ)

ϕ(aψ)
eksaψ ≤ [kψ

Φ(aψ)

ϕ(aψ)
+ 1]e(ks−kψ)aψC2[e

(kψ−k′)aψ − C3]

= [kψ
Φ(aψ)

ϕ(aψ)
+ 1]e(ks−k

′)aψC2[1− C3e
(k′−kψ)aψ ]

When setting ks < k′, we can see that [1 − C3e
(k′−kψ)aψ ] → 1 and [kψ

Φ(aψ)
ϕ(aψ)

+ 1]e(ks−k
′)aψ → 0 as

aψ → +∞. This concludes our proof.
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F Proofs for the HJB-KF system

F.1 Random walk representation of the Brownian motion

The random walk representation of Brownian motion is intuitive and shall be used for proving the

HJB-KF system by taking the limit of ∆t→ 0.85

Consider a Brownian motion with drift in the continuous-time setting:

dxt = µdt+ νdBt (A12)

Divide time into discrete periods of length ∆t and define

∆h = ν
√
∆t (A13)

and

p =
1

2

[
1 +

µ

ν

√
∆t

]
, q =

1

2

[
1− µ

ν

√
∆t

]
(A14)

Note that p+ q = 1. Consider a two-dimensional space of time t and variable x. At each point on

the grid, x has a probability p of going up ∆h and a probability q of going down ∆h. The discrete

process then converges to the continuous process A12 as ∆t→ 0.86

F.2 Prove the death rate from the left boundary

Using the left boundary condition of ϕ(a) = 0, we have:

ϕ(a+∆h) = ϕ′(a)∆h+ o(∆h)

Thus the number of firms dying from the left boundary per period is

Mϕ(a+∆h)∆hq

∆t
=Mϕ′(a)ν2q + o(1) → 1

2
ν2Mϕ′(a) as ∆t→ 0

Note that it depends only on the Brownian motion and not on the drift term µ.

F.3 Prove the HJB equation

Proof. Each incumbent’s optimization problem is given by:

85See for instance Dixit (2013) for an introduction to the representation.
86The convergence is based on the functional central limit theorem, i.e. Donsker’s invariance principle.
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V (aθ,t, t) = max
λi,θ,s}s≥t

Et
∫ +∞

t
e−

∫ s
t ru du

[
Π(aθ,s;ϕ

M
s )− fAs −Rs(λi,θ,s; ãθ,s)

]
ds (A15)

s.t. equation 29 (A16)

Denote Ωt(aθ,t;λi,θ,t) = Π(aθ,s;ϕ
M
s )−fAs−Rs(λi,θ,s; ãθ,s) to be the period t payoff function. Then

the optimization problem A15 can be written recursively as:

V (aθ,t, t)

=max
λi,θ,t

Et
{
Ωt(aθ,t;λi,θ,t)∆t+ max

{λi,θ,s}s≥t+∆t

Et+∆t

∫ +∞

t+∆t
e−

∫ s
t ru duΩs(aθ,s;λi,θ,s) ds

}
+ o(∆t)

=max
λi,θ,t

Et
{
Ωt(aθ,t;λi,θ,t)∆t+ e−

∫ t+∆t
t ru duV (aθ,t+∆t, t+∆t)

}
+ o(∆t)

=max
λi,θ,t

Et
{
Ωt(aθ,t;λi,θ,t)∆t+ (1− rt∆t)V (aθ,t+∆t, t+∆t)

}
+ o(∆t)

=max
λi,θ,t

{
Ωt(aθ,t;λi,θ,t)∆t+ (1− rt∆t)EtV (aθ,t+∆t, t+∆t)

}
+ o(∆t) (A17)

Use the random walk representation of the Brownian motion with drift for the continuous part of

the stochastic process 29. Then

EtV (aθ,t+∆t, t+∆t) = pV (aθ,t +∆h, t+∆t) + qV (aθ,t −∆h, t+∆t)

+ λi,θ,t∆tV (aθ,t + q, t+∆t) + (1− λi,θ,t∆t− p− q)V (aθ,t, t+∆t) + o(∆t) (A18)

where ∆h, p and q are defined in A13 and A14. Note that we have proceeded as if only one of the

two parts of the stochastic process can happen during the time period [t, t +∆t): the continuous

part of the Brownian motion with drift, the discontinuous part of jumps. The reason is that the

term corresponding to the two happening together is of order o(∆t) and thus absorbed in o(∆t)

in the equation. Because the continuous part is of the order of magnitude O(
√
∆t) or o(

√
∆t) as

∆t → 0+ (the drift term is of order ∆t and the Brownian motion without drift is of order
√
∆t),

and the discontinuous part is of order ∆t, their joint term is of order o(∆t).

Take the Taylor expansion of V with respect to a and t respectively to the second and first order
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in order to have residuals of order o(∆t). For the first two terms of equation A18:

pV (aθ,t +∆h, t+∆t) + qV (aθ,t −∆h, t+∆t)

=p
[
V (aθ,t, t) +

∂V

∂a
(aθ,t, t)∆h+

1

2

∂2V

∂a2
(aθ,t, t)(∆h)

2 +
∂V

∂t
(aθ,t, t)∆t+ o(∆t)

]
+ q

[
V (aθ,t, t)−

∂V

∂a
(aθ,t, t)∆h+

1

2

∂2V

∂a2
(aθ,t, t)(∆h)

2 +
∂V

∂t
(aθ,t, t)∆t+ o(∆t)

]
=V (aθ,t, t) + µ

∂V

∂a
(aθ,t, t)∆t+

1

2
ν2
∂2V

∂a2
(aθ,t, t)∆t+

∂V

∂t
(aθ,t, t)∆t+ o(∆t) (A19)

For the second line of A18:

λi,θ,t∆tV (aθ,t + q, t+∆t) + (1− λi,θ,t∆t− p− q)V (aθ,t, t+∆t)

=λi,θ,t∆t
[
V (aθ,t + q, t+∆t)− V (aθ,t, t+∆t)

]
=λi,θ,t∆t

[
V (aθ,t + q, t)− V (aθ,t, t)

]
+ o(∆t) (A20)

Combining equations A17, A18, A19 and A20, we get:

V (aθ,t, t)

=max
λi,θ,t

{
Ωt(aθ,t;λi,θ,t)∆t+ (1− rt∆t)

[
V (aθ,t, t) + µ

∂V

∂a
(aθ,t, t)∆t+

1

2
ν2
∂2V

∂a2
(aθ,t, t)∆t

+
∂V

∂t
(aθ,t, t)∆t+ λi,θ,t∆t[V (aθ,t + q, t)− V (aθ,t, t)]

]}
+ o(∆t)

=max
λi,θ,t

{
Ωt(aθ,t;λi,θ,t)∆t+ V (aθ,t, t) + µ

∂V

∂a
(aθ,t, t)∆t+

1

2
ν2
∂2V

∂a2
(aθ,t, t)∆t

+
∂V

∂t
(aθ,t, t)∆t+ λi,θ,t∆t

[
V (aθ,t + q, t)− V (aθ,t, t)

]
− rt∆tV (aθ,t, t)

}
+ o(∆t)

Cancelling V (aθ,t, t) on both sides of the equation, dividing both sides by ∆t, and taking the limit

of ∆t→ 0+, we get the HJB equation 30.

F.4 Prove the KF equation

Proof. Thinking about the evolution of mass at position aθ,

ϕM (aθ, t+∆t)− ϕM (aθ, t) = pϕM (aθ −∆h, t) + qϕM (aθ −∆h, t)− (p+ q)ϕM (aθ, t)

+ λi(aθ − q, t)∆tϕM (aθ − q, t)− λi(aθ, t)∆tϕ
M (aθ, t)

+ λe,t∆tMeψe(aθ;ϕt)− λd(aθ;ϕ
M
t )∆tϕM (aθ, t) + o(∆t) (A21)

The first line of A21 on the right hand side of the equality corresponds to inflow into aθ and outflow

from aθ due to Brownian motion with drift. The second line corresponds to inflow and outflow
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due to jumps and the third line corresponds to entry and exit. Like in the proof of HJB, we have

ignored the interactions between these movements as they are of order o(∆t).

For the first line,

pϕM (aθ −∆h, t) + qϕM (aθ −∆h, t)− (p+ q)ϕM (aθ, t)

=p
[
ϕM (aθ, t)−∆h

∂ϕM

∂a
(aθ, t) +

1

2
(∆h)2

∂2ϕM

∂a2
(aθ, t) + o(∆t)

]
+ q

[
ϕM (aθ, t) + ∆h

∂ϕM

∂a
(aθ, t) +

1

2
(∆h)2

∂2ϕM

∂a2
(aθ, t) + o(∆t)

]
− ϕM (aθ, t)

=− µ
∂ϕM

∂a
(aθ, t)∆t+

1

2
ν2
∂2ϕM

∂a2
(aθ, t)∆t+ o(∆t) (A22)

Plugging A22 into A21, dividing both sides of A21 by ∆t and taking the limit of ∆t→ 0+, we get

the KF equation 37.

F.5 Prove the adjointness of the HJB operator and KF operator

We want to prove that for any f : [a,+∞) → R with f(a) = 0 and any test function g : [a,+∞) → R
with compact support and g(a) = 0,

< Ftf, g >=< f,Ktg > (A23)

where

Ktg = −µg′ + 1

2
ν2g′′ − λd(aθ;ϕ

M
t )g + λi(aθ − q, t)g(aθ − q)− λi(aθ, t)g(aθ) (A24)

i.e. the operator in the Kolmogorov equation 37. Equation A23 means that Kt = F⊺
t and hence

simplifies numerical calculations: when discretized, the operator matrix for the KF equation is

simply the transpose of the operator matrix for the HJB equation.

In fact,

< Ftf, g >=
∫ +∞

a
g(aθ)

{
µf ′(aθ)+

1

2
ν2f ′′(aθ)+λi(aθ, t)

[
f(aθ+q)−f(aθ)

]
−λd(aθ;ϕMt )f(aθ)

}
daθ

(A25)
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where∫ +∞

a
g(aθ)

{
µf ′(aθ) +

1

2
ν2f ′′(aθ)

}
daθ

=µg(aθ)f(aθ)
∣∣∣+∞

aθ=a
−
∫ +∞

a
µf(aθ)g

′(aθ) daθ +
1

2
ν2f ′(aθ)g(aθ)

∣∣∣+∞

aθ=a
−
∫ +∞

a

1

2
ν2f ′(aθ)g

′(aθ) daθ

=−
∫ +∞

a
µf(aθ)g

′(aθ) daθ −
1

2
ν2f(aθ)g

′(aθ)
∣∣∣+∞

aθ=a
+

∫ +∞

a

1

2
ν2f(aθ)g

′′(aθ) daθ

=−
∫ +∞

a
µf(aθ)g

′(aθ) daθ +

∫ +∞

a

1

2
ν2f(aθ)g

′′(aθ) daθ (A26)

and ∫ +∞

a
g(aθ)λi(aθ, t)

[
f(aθ + q)− f(aθ)

]
daθ

=

∫ +∞

a
g(aθ)λi(aθ, t)f(aθ + q) daθ −

∫ +∞

a
g(aθ)λi(aθ, t)f(aθ) daθ

=

∫ +∞

a
g(aθ − q)λi(aθ − q, t)f(aθ) daθ −

∫ +∞

a
g(aθ)λi(aθ, t)f(aθ) daθ

=

∫ +∞

a
f(aθ)

[
g(aθ − q)λi(aθ − q, t)− g(aθ)λi(aθ, t)

]
daθ (A27)

.

Plugging A27 and A26 into A25,

< Ftf, g >

=

∫ +∞

a
f(aθ)

[
− µg′(aθ) +

1

2
ν2g′′(aθ) + g(aθ − q)λi(aθ − q, t)− g(aθ)λi(aθ, t)

]
daθ

= < f,Ktg >

meaning that the KF operator Kt is the adjoint operator of the HJB operator Ft.

F.6 Normalization

Since we are in a growth model, it is natural to normalize the distribution ϕ by the aggregate TFP

a. Denote ãθ = aθ − a and define ϕ̃(ãθ) ≜ ϕ(aθ) as the normalized log-productivity distribution.

Moreover, define ϕ̃M (ãθ) ≜Mϕ̃(ãθ). It is easy to verify the following results based on the definitions:

Lemma A2.

1. ψ(aψ; aθ, aj) = ψ(ãψ; ãθ, ãj)

2. ψe(aψ;ϕ) = ψe(ãψ; ϕ̃)

Proposition A9.
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1. Π(aθ;ϕ
M ) = A ·Π(ãθ; ϕ̃M )

2. λd(aθ;ϕ
M ) = λd(ãθ; ϕ̃

M )

Proof.

1. According to the proof in Proposition 1, if each Aθ is divided by A, then the price-wage ratio

P/w increases by A but the relative quantity Zθ =
Yθ
Y does not change. The increase of P/w

reflects a decrease of w by A, as wage tracks productivity in such a growth model. Hence

P (ãθ; ϕ̃
M ) = P (aθ;ϕ

M )

Z(ãθ; ϕ̃
M ) = Z(aθ;ϕ

M )

Since labor is inelastically supplied, Y = AL decreases by A after normalization. Thus

Yθ = Y Zθ decreases by A and Lθ = Yθ/Aθ does not change. Moreover, Pθ = P Pθ
P = Pγ′(Zθ)

does not change. Put together,

Π(aθ;ϕ
M ) = PθYθ − wLθ

= P (aθ;ϕ
M )Y (aθ;ϕ

M )− wL(aθ;ϕ
M )

= P (ãθ; ϕ̃
M )AY (ãθ; ϕ̃

M )−Aw̃L(ãθ; ϕ̃
M )

= AΠ(ãθ; ϕ̃
M )

2. Using the arguments above and the definition of λd, the result is obvious.

We can now proceed with the normalization of the HJB and KF equations.

Denote Ṽ (ãθ, t) =
1
At
V (aθ, t), then based on equation 30:

rtAtṼ (ãθ, t) = max
λi

{
AtΠ(ãθ; ϕ̃

M
t )− fAt −Rt(λi; ãθ)−

1

2
ν2
∂Ṽ

∂ã
(ãθ, t)At +

1

2
ν2
∂2Ṽ

∂ã2
(ãθ, t)At

+λiAt[Ṽ (ãθ+q, t)−Ṽ (ãθ, t)]−λd(ãθ; ϕ̃M )AtṼ (ãθ, t)+
∂At
∂t

Ṽ (ãθ, t)+At[
∂Ṽ

∂t
(ãθ, t)−gt

∂Ṽ

∂ã
(ãθ, t)]

}
Note I have slightly abused the notation by reconsidering λi as a function of normalized log

productivity. Dividing At on both sides and rearranging the terms, we get the HJB with normalized

notation:

(rt − gt)Ṽ (ãθ, t) = max
λi

{
Π(ãθ; ϕ̃

M
t )− f − R̃t(λi; ãθ)− [

1

2
ν2 + gt]

∂Ṽ

∂ã
(ãθ, t) +

1

2
ν2
∂2Ṽ

∂ã2
(ãθ, t)

+ λi[Ṽ (ãθ + q, t)− Ṽ (ãθ, t)]− λd(ãθ; ϕ̃
M )Ṽ (ãθ, t) +

∂Ṽ

∂t
(ãθ, t)

}
(A28)

85



where

R̃t(λi; ãθ) ≜
1

At
Rt(λi; ãθ) =

1

2
αeβãθλ2i

Similarly, the maximization problem of entrants now becomes:

max
λe,t

{
− R̃e,t(λe,t) + λe,t

∫
R
Ṽ (ãψ, t)ψe(ãψ; ϕ̃t) dãψ

}
where

R̃e,t(λe,t) ≜
1

At
Re,t(λe,t) =

1

2
αeλ

2
e,t

For the KFE, first note that ϕM (aθ, t) = ϕ̃M (aθ −
∫ t
0 gs ds, t). Thus

∂ϕM

∂t
(aθ, t) =

∂ϕ̃M

∂t
(ãθ, t)−

∂ϕ̃M

∂ã
(ãθ, t)gt

Hence the normalized version is:

∂ϕ̃M

∂t
(ãθ, t) = −

∂[−(12ν
2 + gt)ϕ̃

M ]

∂ã
(ãθ, t)+

1

2
ν2
∂2ϕ̃M

∂ã2
(ãθ, t)+λe,tMeψe(ãθ; ϕ̃t)−λd(ãθ; ϕ̃Mt )ϕ̃M (ãθ, t)

+ λi(ãθ − q, t)ϕ̃M (ãθ − q, t)− λi(ãθ, t)ϕ̃
M (ãθ, t)

Define the normalized version of the differential operator:

F̃tṼ = −[
1

2
ν2 + gt]

∂Ṽ

∂ã
+

1

2
ν2
∂2Ṽ

∂ã2
+ λi[Ṽ (ãθ + q)− Ṽ (ãθ)]− λd(ãθ; ϕ̃

M )Ṽ

Then the HJB is:

(rt − gt)Ṽ (ãθ, t) = max
λi

{
Π(ãθ; ϕ̃

M
t )− f − R̃t(λi; ãθ) + F̃tṼ +

∂Ṽ

∂t

}
(A29)

with boundary condition

Ṽ (ãt, t) = 0

The KFE is:
∂ϕ̃M

∂t
= F̃⊺

t ϕ̃
M + λe,tMeψe(·; ϕ̃t) (A30)

with boundary condition

ϕ̃M (ãt, t) = 0

F.7 Travelling wave solution: Proof of normalization in Definition 1

Proof. First note that all the time indices can be dropped in the normalized version of HJB and

KFE in the last section, as the travelling wave after normalization is stationary with all the variables

being constant.
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The HJB under a travelling wave can be easily proved from equation A28. For the KFE, the equa-

tion regarding ϕ̃ is straightforward: one only needs to divide M from both sides of equation A30.

To prove equation 48, first rewrite the explicit form of KFE under a travelling wave equilibrium:

0 = (
1

2
ν2 + g)(ϕ̃M )′ +

1

2
ν2(ϕ̃M )′′ +λeMeψe−λd(ãθ; ϕ̃

M )ϕ̃M +λi(ãθ − q)ϕ̃M (ãθ − q)−λi(ãθ)ϕ̃
M (ãθ)

Integrate the above equation over [ã,+∞), using the left boundary condition. Then

0 =
1

2
ν2(ϕ̃M )′(ã) + λeMe −

∫ +∞

ã
λd(ãθ; ϕ̃

M )ϕ̃M (ãθ) dãθ

or equivalently

λeMe =M
[ ∫

R
λd(ãθ; ϕ̃

M )ϕ̃(ãθ) dãθ +
ν2

2
ϕ̃′(ã)

]

F.8 Indistinguishable economies

Proof of Proposition 5

Proof. We prove by verification. Given the same ϕ̃ and M across the two economies, the profit

function of the economy with s ̸= 1 (henceforth economy 2) is s times the profit function of the

economy with s = 1 (henceforth economy 1).

This is because their Zθ, P/w and A are the same by equations 19, 4 and 17, thus the total welfare

is sY in economy 2 and the output of firm θ is ZθsY which is s times large. The scale of production

is s times large and the same for the profit. As the fixed cost also changes by s times, the left

boundary ã remains the same.

It is easy to check that sṼ is the value function of economy 2 (HJB 41), given that α also changes by

s. The choice of λi and λe remains the same, and consequently the equilibrium distribution ϕ̃, the

measure of firms M and the aggregate growth g remain the same. This feeds into our assumption

at the beginning of the proof.

F.9 HJB-KF system of the extended model

The HJB and KF equations have intuitive interpretations, thus I will not repeat the proofs for

the extended model. Interested readers can follow the same procedure for deriving the equations

when incumbent learning is introduced. Normalization under a travelling wave equilibrium follows

the same procedure and will also be skipped. I shall only prove the adjointness between the HJB

operator and the KF operator to show that this is a general feature in a Mean Field Game. The
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proof is for the non-normalized setting with time index t, which can be easily adapted for the

normalized case under a travelling wave equilibrium.

We want to prove that for any f : [a,+∞) → R with f(a) = 0 and any test function g : [a,+∞) → R
with compact support and g(a) = 0,

< Ftf, g >=< f,Ktg > (A31)

where

Ftf = −1

2
ν2f ′ +

1

2
ν2f ′′ + λc(aθ, t)

∫
R

[
f(aψ)− f

]
ψc(aψ; aθ) daψ − λd(aθ;ϕ

M
t )f (A32)

and

Ktg = −µg′ + 1

2
ν2g′′ − λd(aθ;ϕ

M
t )g

+

∫
(−∞,aθ)

λc,t(aψ)g(aψ)ψc(aθ; aψ) daψ − g(aθ)λc,t(aθ)

∫
(aθ,+∞)

ψc(aψ; aθ) daψ (A33)

Note that in A33, c in the first integral is chosen based on aψ, while in the second integral it is

chosen based on aθ. I have dropped ϕt from the expression of ψc for notational simplicity.

In fact,

< Ftf, g >=
∫ +∞

a
g(aθ)

{
µf ′(aθ) +

1

2
ν2f ′′(aθ)

+ λc(aθ)(aθ, t)

∫ +∞

aθ

[
f(aψ)− f(aθ)

]
ψc(aθ)(aψ; aθ) daψ − λd(aθ;ϕ

M
t )f(aθ)

}
daθ (A34)

where∫ +∞

a
g(aθ)

{
µf ′(aθ) +

1

2
ν2f ′′(aθ)

}
daθ = −

∫ +∞

a
µf(aθ)g

′(aθ) daθ +

∫ +∞

a

1

2
ν2f(aθ)g

′′(aθ) daθ

(A35)
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according to equation A26, and∫ +∞

a
g(aθ)λc(aθ)(aθ, t)

∫ +∞

aθ

[
f(aψ)− f(aθ)

]
ψc(aθ)(aψ; aθ) daψ daθ

=

∫ +∞

a

∫ +∞

aθ

g(aθ)λc(aθ)(aθ, t)f(aψ)ψc(aθ)(aψ; aθ) daψ daθ

−
∫ +∞

a
g(aθ)λc(aθ)(aθ, t)f(aθ)

∫ +∞

aθ

ψc(aθ)(aψ; aθ) daψ daθ (A36)

=

∫ +∞

a

∫ aψ

a
g(aθ)λc(aθ)(aθ, t)f(aψ)ψc(aθ)(aψ; aθ) daθ daψ

−
∫ +∞

a
g(aθ)λc(aθ)(aθ, t)f(aθ)

∫ +∞

aθ

ψc(aθ)(aψ; aθ) daψ daθ (A37)

=

∫ +∞

a
f(aθ)

[ ∫ aθ

a
g(aψ)λc(aψ)(aψ, t)ψc(aψ)(aθ; aψ) daψ

− g(aθ)λc(aθ)(aθ, t)

∫ +∞

aθ

ψc(aθ)(aψ; aθ) daψ

]
daθ (A38)

.

We have changed the order of integration for the first double integral from A36 to A37. From A37

to A38 we have simply shifted the indexing between aθ and aψ for the first double integral.

Plugging A38 and A35 into A34,

< Ftf, g >

=

∫ +∞

a
f(aθ)

[
− µg′(aθ) +

1

2
ν2g′′(aθ) +

∫ aθ

a
g(aψ)λc(aψ)(aψ, t)ψc(aψ)(aθ; aψ) daψ

− g(aθ)λc(aθ)(aθ, t)

∫ +∞

aθ

ψc(aθ)(aψ; aθ) daψ

]
daθ

= < f,Ktg >

meaning that the KF operator Kt is the adjoint operator of the HJB operator Ft.

G Proof of the unique tail of KF equation

The non-interference condition of entry will play a key role in proving the uniqueness of the
equilibrium tail, regardless of the initial condition of ϕ. To grasp the intuition, consider a dynamic
process in which individual firms constantly evolve over time. If ϕ(a) ∼ C1e

−kϕa, then ψe(a) ∼
C2e

−(kϕ+kψ)a. Thus ψe has a lighter tail than ϕ if kψ > 0, and the non-interference condition holds.
When two exponential tails are linearly combined, one with a heavier tail than the other, the heavier
tail dominates. For instance, C4ϕ(a) + C5ϕe(a) ∼ C6e

−kϕa. The non-interference condition thus
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ensures that entrants do not change the tail of ϕ when they are injected into it. This is supported
by the data in which the entrant distribution has a lighter tail than the incumbent distribution.
Consequently, the tail of ϕ is determined by the drift term (dt term) and idiosyncratic shocks (dBθ,t
term). Entry affects the tail of ϕ mainly through a change in the growth rate which appears in the
drift term.

It is useful to compare with the case in which kψ = 0 and the non-interference conditions fail.
Denote kϕ to be the tail index if only the drift term and the idiosyncratic shocks shape the distri-
bution. Then if the initial condition of ϕ is very thin-tailed, for instance a Dirac mass point, then
the injection of ψe does not interfere with the process of converging towards the tail kϕ, as they
are parameterized by past values of ϕ which are more thin-tailed. This sheds light on why Luttmer
(2012) and Perla et al. (2021) assume an initial condition with a lighter tail. On the other hand, if the
initial condition is heavier-tailed than kϕ, then ψe keeps interfering with the incumbent distribution
every period so that the equilibrium distribution depends on the initial distribution.

The mild assumption of imperfect learning and its implication of non-interference can thus establish
the tail uniqueness in a powerful way. The proofs below demonstrate the intuition in a rigorous
fashion. Moreover, they show that the log-productivity distribution must be exponential-tailed and
thus the productivity distribution must be Pareto-tailed.

The proof will be based on the Laplace transform defined by:

f̂(ξ) =

∫ +∞

a
e−ξaf(a) da (A39)

where ξ = ξr + ιξι ∈ C, ι2 = −1, ξr and ξι are respectively the real and imaginary part

of ξ. While the Laplace transform is often used with real ξ in practice, we need a complex

ξ to define a complex function f̂(ξ). This allows us to take advantage of holomorphic (i.e.

analytic) and meromorphic functions which will be key for the proof.87 As in complex analysis,

e−ξa = e−ξ
rae−ιξ

ιa = e−ξ
ra[cos(ξιa)− ι sin(ξιa)].

Definition A2 (At Least Exponential Decay).

A non-negative function f(x) is said to decay at least exponentially to f(∞) ≥ 0 if there exists an

s > 0 such that |f(x)− f(∞)| ∼ o(e−sx).

Remark: The exponential decay of e−kx is obviously a case of at least exponential decay by

setting s ∈ (0, k).

87See any textbook on complex analysis for holomorphic and meromorphic functions, for instance Stein and Shakarchi
(2010).
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Proposition A10 (Widder (1946) Corollary 1a 1b).

1. If the integral A39 converges for ξ = ξr + ιξι, it converges for all ζ = ζr + ιζι for which

ζr > ξr.

2. If the integral A39 diverges for ξ = ξr + ιξι, it diverges for all ζ = ζr + ιζι for which ζr < ξr.

Based on the Proposition, there are three possible cases:

• The integral converges for any ξ ∈ C

• The integral diverges for any ξ ∈ C

• There exists a ξr0 ∈ R such that the integral converges for any ξ ∈ C with ξr > ξr0, and

diverges for any ξ ∈ C with ξr < ξr0

ξr0 ∈ R is called the abscissa of convergence. We harmonize the notation by denoting −∞ as the

abscissa of convergence for the first case and +∞ for the second. In cases where f is a PDF, the

abscissa of convergence must fall within the range of [−∞, 0], as f̂(0) =
∫ +∞
a f(a) da = 1 converges.

As examples, ξr0 = 0 if f is Pareto-tailed; ξr0 ∈ (−∞, 0) if f is exponential-tailed; ξr0 = −∞ if f is

normal-tailed.

To give an idea of the proof, consider an exponentially-distributed f(a) = Ce−sa, where s > 0.

Then f̂(ξ) = C
ξ+se

−(ξ+s)a, which is analytic for ξ > −s and has a pole at ξ = −s. Intuitively, the

Laplace transform allows us to gauge the tail index of the distribution (s in this case) by focusing

on its singularities. The proof follows a similar idea as that in Gabaix et al. (2016) but allows for

heterogeneous growth and death across firms. The following propositions will be used for the proof.

In particular, Mimica (2016) allows us to establish the tail of f from its Laplace transform.

Proposition A11 (Widder (1946) Theorem 5a).

f̂(ξ) as defined by equation A39 is analytic for any ξ whose real part ξr > ξr0.

Proposition A12 (Widder (1946) Theorem 5b).

If dF (a) = f(a)da and if F is monotonic, then ξr0 is a singularity of f̂(ξ).

Remark: In cases where f is a PDF and its abscissa of convergence is 0, even though f̂(0)

converges, 0 is still a singular point of f̂ in the sense of complex analysis. This arises from the fact

the definition of analyticity requires a function to have Taylor expansions in a neighborhood of a

point in order to be analytic at that point. As f̂ cannot be defined for any ξ < 0 if ξr0 = 0, 0 is a

singular point of f̂ .

Proposition A13 (Widder (1946) Theorem 2.4a). If lim supa→+∞
log |f(a)|

a = ξr0 ̸= 0, then ξr0 is

the abscissa of convergence of equation A39.
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Proposition A14 (Widder (1946) Theorem 2.4b). If equation A39 has non-negative abscissa of

convergence ξr0, then lim supa→+∞
log |f(a)|

a = ξr0.

Proposition A15 (Mimica (2016) Corollary 1.4).

If f is a PDF and if ξr0 is a pole of f̂ , then

lim
a→+∞

log(F̄ (a))

a
= ξr0

where F̄ (a) = 1− F (a) and F is the CDF of f .

G.1 Proof for the KF equation in the baseline model

To simplify the proofs, first note that the baseline model can be approximated by an alternative

model in which each incumbent evolves continuously without jumps. In fact, the HJB equation 41

and the KF equation 46 can be approximated respectively by:

(r − g)Ṽ = max
λi

{
Π(ãθ; ϕ̃

M )− f − R̃(λi; ãθ) +
[
− 1

2
ν2 − g + λiq

]
Ṽ ′(ãθ) +

1

2
ν2Ṽ ′′(ãθ)− λd(ãθ; ϕ̃

M )Ṽ
}

(A40)

0 = (
1

2
ν2 + g)ϕ̃′ +

1

2
ν2ϕ̃′′ +

λeMe

M
ψe − λd(ãθ; ϕ̃

M )ϕ̃− q
d[λi(ãθ)ϕ̃(ãθ)]

dãθ
(A41)

which are HJB and KF equations of an alternative model in which the normalized log productivity

evolves according to

dãθ,t =
[
− 1

2
ν2 − g + λi(ãθ,t)q

]
dt+ νdBθ,t

The only difference in the alternative model is that log productivity now improves with certainty

with per-period rate λiq after incurring the innovation cost. Firm dynamics is thus different

at the micro level. However, macro level variables including the productivity distribution are

approximately the same under the two models. Both models can use exactly the same numerical

scheme in computations. We will stick with the continuous specification as it simplifies some of the

proofs.

The proof follows the following steps:

1. Prove the death rate declines at least exponentially with log productivity to the asymptotic

death rate, thus a similar non-interference condition is satisfied for death.

2. Prove the asymptotic property of the value function.

3. Prove the monotonicity of the value function.

4. Prove the at least exponential decay of the innovation intensity.

5. Prove the ultimate monotonicity of the equilibrium log productivity PDF
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6. Prove the uniqueness of the tail of the KF equation, using the previous results.

For notational conciseness, I will drop the tilde notation in this proof even though the

HJB and KF equations are the normalized version. I will also drop notations of the

dependence on ϕ whenever it does not cause confusion.

Proposition A16 (Decay of Death Function).

λd(aθ) decreases at least exponentially to λd(∞).

Proof. Using equations A3 and A4, we have:

∂ log(PθYθ)

∂aθ
=
∂zθ
∂aθ

− ∂ log(Pθ)

∂MCθ

=
(σθ − 1)2

σθ − 1− ∂σ
∂zθ

< σθ − 1

Thus

λd(aθ) = P
(∂ log(PθYθ)

∂aθ
· νB1 < −κ

)
= P

(
B1 < −κ

ν
[
∂ log(PθYθ)

∂aθ
]−1

)
< P

(
B1 < − κ

ν(σθ − 1)

)
= ΦN

(
− κ

ν(σθ − 1)

)
≜ λd(aθ) (A42)

where ΦN is the CDF of N (0, 1).

It is easy to see that

lim
aθ→+∞

λd(aθ) = ΦN

(
− κ

ν(σ − 1)

)
≜ λd(∞)

and that λd(aθ) is monotonically decreasing in aθ. We want to describe the speed of decrease of

λd(aθ) in order to bound the decrease of λd(aθ). This is achieved by using

λd(aθ) = −
∫ +∞

aθ

∂λd
∂aθ

daθ + λd(∞) (A43)

where
∂λd
∂aθ

= ϕN

(
− κ

ν(σθ − 1)

) κ

ν(σθ − 1)2
∂σ

∂zθ

∂zθ
∂aθ

(A44)

The terms in A44 shall be analysed one by one. First note that the first and second terms are
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positive and bounded away from 0 and +∞. For the fourth term, using equation A3,

∂zθ
∂aθ

<
σθ(σθ − 1)

σθ − 1
= σθ < σ (A45)

For the third term ∂σ
∂zθ

, we first note by 11 that

∂σ

∂zθ
= − k(σ − σ)

(1 + e−kzθ)2
e−kzθ

≥ −C1e
−kzθ

Moreover, according to A5, ∂zθ∂aθ
≥ C2 where C2 =

σ

1+σ−σ
σ−1

k
> 0 is a constant. Hence

zθ =

∫ aθ

a

∂zθ
∂aθ

daθ + z(a)

≥ C2(aθ − a) + z(a)

= C2aθ + C3

where C3 ∈ R is a constant. Consequently,

∂σ

∂zθ
≥ −C1e

−k(C2aθ+C3)

= −C4e
−kC2aθ (A46)

where C4 > 0 is a constant.

Combining A45, A46 and the fact that the first two terms of A44 are bounded away from +∞, we

get:
∂λd
∂aθ

≥ −C5e
−kC2aθ

for some positive constants C2 and C5. Plugging this into A43, we get:

λd(aθ) ≤
∫ +∞

aθ

C5e
−kC2aθ daθ + λd(∞)

= C6e
−kC2aθ + λd(∞) (A47)

where C6 > 0 is a constant.

Combining A47 and A42,

λd(aθ) ≤ C6e
−kC2aθ + λd(∞)

= C6e
−kC2aθ + λd(∞)
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where the last equality arises from the fact that λd(∞) = λd(∞). This means that λd(aθ)− λd(∞)

decreases at least exponentially, which concludes the proof.

Proposition A17.

Any solution V (aθ) to the HJB equation 41 must have an abscissa of convergence of σ − 1.

Proof.

Recall the HJB:

(r − g)V = max
λi

{
Π(aθ)− f −R(λi; aθ)− λd(aθ)V +

[
− 1

2
ν2 − g + λiq

]
V ′(aθ) +

1

2
ν2V ′′(aθ)

}
For the lower bound, set λi = 0:

(r − g)V ≥ Π(aθ)− f − λd(aθ)V +
[
− 1

2
ν2 − g

]
V ′(aθ) +

1

2
ν2V ′′(aθ) (A48)

Denote the abscissa of convergence of V as ξr0. Suppose by contradiction that ξr0 < σ − 1, then all

the terms in the inequality A48 have abscissas of convergence strictly smaller than σ − 1 except

for Π(aθ). The last increases asymptotically at the speed of e(σ−1)aθ according to Proposition 2. It

suffices to take the Laplace transform on the two sides of A48 and take the limit of ξ → (σ − 1)+

to see the contradiction. In fact, the Laplace transform of all the other terms converge to finite

numbers except for Π̂(ξ) which tends to +∞ as ξ → (σ − 1)+. This breaks the inequality and

hence ξr0 ≥ σ − 1.

We now prove ξr0 ≤ σ − 1 so that it must be σ − 1. Consider another dynamic control problem

in which each firm can choose from a second type of growth strategy: by investing Rs(λs; aθ) =
1
2αA

βs
θ λ

2
s in research where βs > σ − 1, the firm’s productivity can grow with certainty λs per

period. Following the notational convention in this section, I have removed the tildes. The HJB of

this alternative dynamic control problem is:

(r − g)VE = max
c, λc

{
Π(aθ)− f − λd(aθ)VE +

[
− 1

2
ν2 − g

]
V ′
E(aθ) +

1

2
ν2V ′′

E (aθ)

+ 1c=i

[
−R(λc; aθ) + λcqV

′
E(aθ)

]
+ 1c=s

[
−Rs(λc; aθ) + λcV

′
E(aθ)

]}
where c ∈ {i, s} is the choice between innovation and the second type of growth strategy. First note

that VE ≥ V , as each firm has more choices in the second dynamic control problem. Moreover,

(r − g)VE ≥ max
λs

{
Π(aθ)− f − λd(aθ)VE +

[
− 1

2
ν2 − g

]
V ′
E(aθ) +

1

2
ν2V ′′

E (aθ)−Rs(λs; aθ) + λsV
′
E(aθ)

}
= Π(aθ)− f − λd(aθ)VE +

[
− 1

2
ν2 − g

]
V ′
E(aθ) +

1

2
ν2V ′′

E (aθ) +
(V ′
E)

2

2αeβsaθ
(A49)
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where the inequality arises from the fact that the firm is only choosing λs on the right hand side

of the inequality, while VE on the left hand side is based on all possible choices. Denote ξrE to

be the abscissa of convergence of VE , which is also the abscissa for V ′
E and V ′′

E . According to

Proposition A14,

lim sup
a→+∞

log(|V ′
E(a)|)
a

= ξrE

Thus for the last term of equation A49,

lim sup
a→+∞

1

a
log

[ (V ′
E)

2

2αeβsa

]
= 2ξrE − βs

which implies, according to Proposition A13, that 2ξrE−βs is the abscissa of convergence of
(V ′
E)

2

2αeβsaθ
.

It is easy to see that ξrE ≤ βs. Otherwise 2ξrE − βs > ξrE > βs > σ − 1: the LHS of equation A49

has an abscissa of ξrE but the RHS has an abscissa of 2ξrE − βs, which contradicts the inequality.

Based on V ≤ VE , ξ
r
0 ≤ βs. The argument is true for any βs > σ − 1, hence ξr0 ≤ σ − 1 and we can

conclude.

Proposition A18.

V (aθ) > 0 (∀aθ > a), and is monotonically increasing.

Proof.

To see V (aθ) > 0 (∀aθ > a), consider an alternative stochastic process in which λi is always set

to 0. Value function VNC of this alternative process must be positive for all aθ > a, as per-period

profit net of fixed cost is positive before death so that the discounted future cash flow is positive.

Moreover, V (aθ) ≥ VNC(aθ), as the choice set of the baseline model includes that of the alternative

model. Thus V > 0 for all aθ > a.

To prove the monotonicity of V , we use the idea of coupling. Given a specific travelling wave, i.e. ϕM

with speed g, we want to show that the dynamic control problem starting from ak has a higher value

than the problem starting from aj if ak > aj . The general idea is that we want to compare stochastic

processes with the two initial starting points. Such a comparison is much easier if the randomness

across the two processes are not independent but “coupled”, for instance if the realizations of

Brownian motion are the same. Note that coupling does not modify the value function, as the latter

depends on the marginal distribution of each of the stochastic processes: introducing correlations

between the two stochastic processes does not modify the marginal distribution.

In particular, consider a dynamic control problem starting from aj . Consider another problem

starting from ak with modifications from the baseline assumptions. We assume that the death rate

of the firm k is always the same as firm j, and that the realization of sales death happens at the

same time for both firms. Firms j and k may meet each other at some time τ . We assume that

the realization of randomness is the same after meeting so that the two processes are identical
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after time τ . Assume in addition that firm k always sets λi = 0 before meeting. There are three

possibilities:

• The two firms meet each other for the first time at time τ .

• The two firms die at the same time due to the realization of λd before meeting.

• Firm j hits the left boundary and dies. Firm k keeps moving with the death rate of the

baseline model and with λi = 0.

Before meeting, the stochastic process of firm k is simply a Brownian motion with negative drift

so that it reaches any point aθ ∈ [a, ak) within a finite time. Thus firm k must meet with firm j

within a finite time conditional on the survival of both, as both processes are continuous. The last

two possibilities correspond to two scenarios of death before meeting.

The value function of firm j’s problem is V (aj). Denote firm k’s value as Vm(ak) where m stands

for “modified”. It is easy to see Vm(ak) > V (aj), as cash flows after meeting are the same across

both firms, and are strictly higher in firm k than in firm j before meeting. The latter arises from

the fact that firm k’s operational profit net of fixed cost at any time is strictly higher than that of

firm j before meeting, and that firm j spends on innovation so that its cash flow is further reduced

by innovation costs.

Moreover, V (ak) ≥ Vm(ak), as choice is more restricted in the modified process and the death rate

is higher. Thus V (ak) > V (aj) and we have reached the conclusion.

Proposition A19.

λi(aθ) > 0 ∀aθ > a. Moreover, if β > σ − 1, then λi decreases at least exponentially to 0.

Proof. Recall that

λi(aθ) =
1

αeβaθ
qV ′(aθ)

The positiveness of λi thus follows directly from the monotonicity of V .

We have seen in Proposition A17 that the abscissa of convergence of V , ξr0 = σ − 1. The same is

true for the abscissa of V ′. Denote ϵ = 1
2(β − ξr0) > 0, then V (aθ) = o(e(ξ

r
0+ϵ)aθ). Rewrite λi as:

λi(aθ) =
qV ′(aθ)

e(ξ
r
0+ϵ)aθ

· e−(β−(ξr0+ϵ))aθ

The first term on the right hand size is bounded, while the second term converges exponentially to

0 as β > ξr0 + ϵ. Thus λi(aθ) converges exponentially to 0.
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Proposition A20.

If β > σ − 1, then any solution ϕ of the KF equation 46 must be ultimately decreasing.

Proof.

Recall the KF equation:

0 = (
1

2
ν2 + g)ϕ′ +

1

2
ν2ϕ′′ +

λeMe

M
ψe − λd(a;ϕ

M )ϕ− q
d[λi(a)ϕ(a)]

da
(A50)

Integrating both sides on [a, a] and using the boundary condition, we get:

0 = (
1

2
ν2 + g)ϕ(a) +

1

2
ν2(ϕ′(a)− ϕ′(a))− qλi(a)ϕ(a)−

∫ a

a
λd(a)ϕ(a) da+

λeMe

M

∫ a

a
ψe(a) da

Rearranging the terms and using the balanced entry/exit condition:

1

2
ν2ϕ′(a)

=− (
1

2
ν2 + g)ϕ(a) +

[λeMe

M
−
∫ +∞

a
λd(a)ϕ(a) da

]
+ qλi(a)ϕ(a) +

∫ a

a
λd(a)ϕ(a) da−

λeMe

M

∫ a

a
ψe(a) da

=− (
1

2
ν2 + g)ϕ(a) + qλi(a)ϕ(a) +

λeMe

M

∫ +∞

a
ψe(a) da−

∫ +∞

a
λd(a)ϕ(a) da

≤
[
− 1

2
ν2 − g + qλi(a)

]
ϕ(a) +

λeMe

M

∫ +∞

a
ψe(a) da−

∫ +∞

a
λd(∞)ϕ(a) da

=
[
− 1

2
ν2 − g + qλi(a)

]
ϕ(a) +

[λeMe

M
e−kψ(a−a) − λd(∞)

]
Φ(a) (A51)

We have seen in Proposition A19 that λi declines at least exponentially to 0. Thus −1
2ν

2 − g +

qλi(a) < 0 for a sufficiently large a. The same is true for λeMe
M e−kψ(a−a) − λd(∞) as λd(∞) > 0.

Thus ϕ′(a) < 0 for a sufficiently large a, meaning that ϕ is ultimately decreasing.

We are now ready to prove the tail uniqueness in Proposition 4.

Proof.

Apply the Laplace transform to the KF equation A50:

0 = (
1

2
ν2 + g)ξϕ̂(ξ) +

1

2
ν2
[
ξ2ϕ̂(ξ)− e−ξaϕ′(a)

]
+
λeMe

M
ψ̂e − λ̂dϕ− qξλ̂iϕ (A52)

where we have used the facts that ϕ̂′(ξ) = ξϕ̂(ξ), ϕ̂′′(ξ) = ξ2ϕ̂(ξ)−e−ξaϕ′(a), and d[λi(a)ϕ(a)]/dâ(ξ) =

ξλ̂iϕ.

Decompose λ̂dϕ(ξ) into

λ̂dϕ(ξ) = (λd − λd(∞))ϕ̂(ξ) + λd(∞)ϕ̂(ξ)
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Thus equation A52 can be rearranged as:

ϕ̂ =
−1

2ν
2e−ξaϕ′(a)− (λd − λd(∞))ϕ̂− qξλ̂iϕ+ λeMe

M ψ̂e

−(12ν
2 + g)ξ − 1

2ν
2ξ2 + λd(∞)

(A53)

We want to find the pole of ϕ̂ in order to apply Proposition A15. This takes a few steps. Denote

ξr0 ∈ [−∞, 0] to be the abscissa of convergence for the Laplace transform of ϕ.

Step 1. ∃ some constant s > 0, such that the abscissas of convergence of the hat terms in the

numerator of equation A53 are at most ξr0 − s.

This is obvious for (λd − λd(∞))ϕ̂ and λiϕ̂, as λd(aθ) − λd(∞) and λi(aθ) decrease at least expo-

nentially to 0 as aθ → +∞ (Proposition A16 and A19).

We have shown in Proposition A20 that ϕ must be ultimately monotone. Together with the

assumption of kψ > 0, Proposition 3 says that there is an exponential wedge between ψe and ϕ.

Hence the result is also true for ψ̂e.

Step 2. ξr0 > −∞.

Suppose ξr0 = −∞ by contradiction. We want to show that this implies ϕ̂(ξ) < 0 as ξ → −∞ and

hence a contradiction.

We analyse term by term for equation A52. First, −qξλ̂iϕ(ξ) → +∞ as ξ → −∞. This is because

−qξ → +∞ as ξ → −∞ and

λ̂iϕ(ξ) =

∫ +∞

a
e−ξaλi(a)ϕ(a) da

≥
∫ +∞

0
e−ξaλi(a)ϕ(a) da

≥
∫ +∞

0
λi(a)ϕ(a) da > 0, ∀ξ < 0.

Second, λd(aθ) is obviously bounded, hence

λ̂dϕ(ξ) =

∫ +∞

a
e−ξaθλd(aθ)ϕ(aθ) daθ

≤ C1ϕ̂(ξ)

for some positive constant C1.
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Third, using the balanced entry/exit condition 48,

−1

2
ν2e−ξaϕ′(a) +

λeMe

M
ψ̂e(ξ) = −e−ξa

[λeMe

M
−
∫ +∞

a
λd(aθ)ϕ(aθ) daθ

]
+
λeMe

M
ψ̂e(ξ)

=
λeMe

M

[
ψ̂e(ξ)− e−ξa

]
+ e−ξa

∫ +∞

a
λd(aθ)ϕ(aθ) daθ

where

ψ̂e(ξ) =

∫ +∞

a
e−ξaψe(a) da ≥

∫ +∞

a
e−ξaψe(a) da = e−ξa, ∀ξ ≤ 0

Combining these elements with equation A52, we get:

λeMe

M

[
ψ̂e(ξ)− e−ξa

]
+ e−ξa

∫ +∞

a
λd(aθ)ϕ(aθ) daθ − qξλ̂iϕ

=− (
1

2
ν2 + g)ξϕ̂(ξ)− 1

2
ν2ξ2ϕ̂(ξ) + λ̂dϕ(ξ)

≤
[
− (

1

2
ν2 + g)ξ − 1

2
ν2ξ2 + C1

]
ϕ̂(ξ) (A54)

By our analysis above, the first line of the above equation tends to +∞ as ξ → −∞. Moreover,

−(12ν
2 + g)ξ − 1

2ν
2ξ2 + C1 → −∞ as ξ → −∞. This implies that ϕ̂(ξ) < 0 for sufficiently negative

ξ, which contradicts the fact that ϕ̂(ξ) must be positive.

Step 3. We want to show that ξr0 ≤ ξ−, where ξ− ∈ R is the only negative root of

f(ξ) ≜ −(
1

2
ν2 + g)ξ − 1

2
ν2ξ2 + λd(∞) = 0

The above equation obviously has one negative root ξ− = −(12 + g
ν2
) −

√
(12 + g

ν2
)2 + 2λd(∞)

ν2
and

one positive root ξ+ = −(12 + g
ν2
) +

√
(12 + g

ν2
)2 + 2λd(∞)

ν2
.

ξ+ is a removable singularity of A53. This is because ξr0 ≤ 0 and hence ϕ̂ must be well defined

in the neighborhood of ξ+. This implies that the numerator of A53 must take the value of

0 at ξ+, i.e. it has the Taylor expansion of
∑∞

n=1 an(ξ − ξ+)
n around the neighborhood of

ξ+. Segregating the denominator of A53 as −(ξ − ξ−)(ξ − ξ+), equation A53 can be written as

ϕ̂(ξ) = − 1
ξ−ξ−

∑∞
n=1 an(ξ−ξ+)n−1 around the neighborhood of ξ+, meaning that it is analytic at ξ+.

Given that ξr0 ≤ 0, according to Step 1 the terms in the numerator converge for any ξ whose real

part ξr is larger than −s. As long as −s > ξ−, ϕ̂ is analytic for the same ξ with ξr > −s. As

ϕ̂ is analytic for any ξ with ξr > −s, its abscissa of convergence ξr0 is at most −s. Otherwise it

contradicts Proposition A12. By the same token, the numerator of A53 converges and hence is

analytic for any ξ with ξr > −2s, and ξr0 is thus at most −2s. The process repeats until we touch

ξ− so that ξr0 ≤ ξ−. Figure A3 illustrates the successive coverage.
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0

Ω1 = (−2s,−s] Ω0 = (−s,+∞)

−s−2s−ns

Ωn = (ξ−,−ns]

· · ·

· · ·

· · ·ξ− ξr

Figure A3: Successive coverage in Step 3 of the proof

Step 4. limx→+∞
log(Φ̄(x))

x = ξ−, where Φ̄(x) =
∫ +∞
x ϕ(x)dx.

ξ = ξ− cannot be a removable singularity of ϕ(ξ), otherwise we could perpetually continue the

process in Step 3 and violate the result of Step 2. It is easy to see that ξ = ξ− is a pole, as the

numerator of ϕ̂(ξ) is analytic in its neighborhood and the denominator is analytic and 0. We can

now apply Proposition A15 to conclude that limx→+∞
log(Φ̄(x))

x = ξ−.

G.2 Proof for the KF equation in the extended model

The proof follows a similar procedure as that of the baseline model. Proposition A16 remains valid

as it depends on the static setting. Proposition A17 can be easily modified for the extended model

and the result remains the same. The strategy for proving Proposition A18, which relies on the

stochastic process being continuous, is no longer valid in the extended model in which incumbent

learning allows large jumps. As the monotonicity of V seems natural, and numerical solutions

consistently find it to be the case, I assume it for convenience. For Proposition A19, readers can

easily prove that λi ≥ 0, λl ≥ 0 and that both decline at least exponentially to 0. The equalities

accommodate cases in which i or l is not chosen. I shall prove a counterpart of A20 in the extended

model and then the tail uniqueness.

Like in the previous section, for notational conciseness, I will drop the tilde notation

in this proof even though the HJB and KF equations are the normalized version. I

will also drop notations of the dependence on ϕ whenever it does not cause confusion.

Recall the KF equation of the extended model:

0 = (
1

2
ν2 + g)ϕ′(aθ) +

1

2
ν2ϕ′′(aθ)− λd(aθ)ϕ(aθ) + λi(aθ − q)ϕ(aθ − q)− λi(aθ)ϕ(aθ)∫ aθ

a
λl(aψ)ϕ(aψ)ψl(aθ; aψ) daψ − ϕ(aθ)λl(aθ)

∫ +∞

aθ

ψl(aψ; aθ) daψ +
λeMe

M
ψe(aθ) (A55)

where λi and λl take the value of 0 if not chosen.
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Proposition A21.

If β > σ − 1, then any solution ϕ to the KF equation 61 must be ultimately decreasing.

Proof.

Like in the baseline model, the proof shall be based on an approximated version of equation 61:

0 = (
1

2
ν2 + g)ϕ′(aθ) +

1

2
ν2ϕ′′(aθ)− λd(aθ)ϕ(aθ)− q

d[λi(aθ)ϕ(aθ)]

daθ∫ aθ

a
λl(aψ)ϕ(aψ)ψl(aθ; aψ) daψ − ϕ(aθ)λl(aθ)

∫ +∞

aθ

ψl(aψ; aθ) daψ +
λeMe

M
ψe(aθ) (A56)

Integrating the equation on [a, a], we get:

0 = (
1

2
ν2 + g)ϕ(a) +

1

2
ν2(ϕ′(a)− ϕ′(a))− qλi(a)ϕ(a)−

∫ a

a
λd(a)ϕ(a) da+

λeMe

M

∫ a

a
ψe(a) da

+

∫ a

a

∫ aθ

a
λl(aψ)ϕ(aψ)ψl(aθ; aψ) daψ daθ −

∫ a

a
ϕ(aθ)λl(aθ)

∫ +∞

aθ

ψl(aψ; aθ) daψ daθ (A57)

where the last two terms are:∫ a

a

∫ aθ

a
λl(aψ)ϕ(aψ)ψl(aθ; aψ) daψ daθ −

∫ a

a
ϕ(aθ)λl(aθ)

∫ +∞

aθ

ψl(aψ; aθ) daψ daθ

=

∫ a

a

∫ aψ

a
λl(aθ)ϕ(aθ)ψl(aψ; aθ) daθ daψ −

∫ a

a

∫ +∞

aθ

ϕ(aθ)λl(aθ)ψl(aψ; aθ) daψ daθ

=−
∫ a

a

∫ +∞

a
ϕ(aθ)λl(aθ)ψl(aψ; aθ) daψ daθ

=−
∫ a

a
ϕ(aθ)λl(aθ)e

−kψ(a−aθ)Φ(a) daθ

=− e−kψaΦ(a)

∫ a

a
ϕ(aθ)λl(aθ)e

kψaθ daθ (A58)

Inserting A58 into A57, and using the balanced entry/exit condition to replace 1
2ν

2ϕ′(a), we get:

1

2
ν2ϕ′(a)

=− (
1

2
ν2 + g)ϕ(a) +

[λeMe

M
−
∫ +∞

a
λd(a)ϕ(a) da

]
+ qλi(a)ϕ(a) +

∫ a

a
λd(a)ϕ(a) da−

λeMe

M

∫ a

a
ψe(a) da

+ e−kψaΦ(a)

∫ a

a
ϕ(aθ)λl(aθ)e

kψaθ daθ

≤
[
− 1

2
ν2 − g + qλi(a)

]
ϕ(a) +

[λeMe

M
e−kψ(a−a) − λd(∞)

]
Φ(a) + e−kψaΦ(a)

∫ a

a
ϕ(aθ)λl(aθ)e

kψaθ daθ

(A59)

where we have followed similar procedures as in equation A51.
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As λl decreases at least exponentially to 0 if β > σ − 1, there exists some s ∈ (0, kψ) and C1 > 0

such that λl(aθ) ≤ C1e
−saθ , ∀aθ ≥ a. Moreover, there exists some C2 > 0 such that ϕ(aθ) ≤ C2,

∀aθ ≥ a. Thus∫ a

a
ϕ(aθ)λl(aθ)e

kψaθ daθ ≤
∫ a

a
C1C2e

(kψ−s)aθ daθ =
C1C2

kψ − s

[
e(kψ−s)a − e(kψ−s)a

]
≤ Ce(kψ−s)a

(A60)

where C > 0 is a constant. Plugging A60 into A59:

1

2
ν2ϕ′(a) ≤

[
− 1

2
ν2 − g + qλi(a)

]
ϕ(a) +

[λeMe

M
e−kψ(a−a) + Ce−sa − λd(∞)

]
Φ(a)

We have seen that λi declines at least exponentially to 0 if β > σ− 1. Thus −1
2ν

2 − g+ qλi(a) < 0

for a sufficiently large a. The same is true for λeMe
M e−kψ(a−a)+Ce−sa−λd(∞) as λd(∞) > 0. Thus

ϕ′(a) < 0 for a sufficiently large a, meaning that ϕ is ultimately decreasing.

We are now ready to prove a counterpart of Proposition 4 under the extended model.

Proof.

The proof follows a similar procedure as that of the baseline model so I shall only highlight the

differences. The only difference between the KF equation A56 in the extended model and that in

the baseline model is the two terms of incumbent learning. We have already denoted one of them

ψin
l (aψ;ϕ) in equation A11. Denote the other one as:

ψout
l (aθ) = ϕ(aθ)λl(aθ)

∫ +∞

aθ

ψl(aψ; aθ) daψ (A61)

The counterpart of A52 under the extended model is thus:

0 = (
1

2
ν2 + g)ξϕ̂(ξ) +

1

2
ν2
[
ξ2ϕ̂(ξ)− e−ξaϕ′(a)

]
+
λeMe

M
ψ̂e − λ̂dϕ− qξλ̂iϕ+ ψ̂in

l (ξ)− ψ̂out
l (ξ) (A62)

with an additional ψ̂in
l (ξ) − ψ̂out

l (ξ) term compared to A52. The counterpart of A53 under the

extended model is

ϕ̂ =
−1

2ν
2e−ξaϕ′(a)− (λd − λd(∞))ϕ̂− qξλ̂iϕ+ λeMe

M ψ̂e + ψ̂in
l (ξ)− ψ̂out

l (ξ)

−(12ν
2 + g)ξ − 1

2ν
2ξ2 + λd(∞)

(A63)

Step 1.

As kψ > 0, ϕ is ultimately monotone and λl(aθ) converges to 0 at least exponentially, Proposition A8

shows that ∃ks > 0 s.t. ψin
l (aθ) converges to 0 more quickly than ϕ(aθ)e

−ksaθ . For ψout
l ,

ψout
l (aθ) ≤ ϕ(aθ)λl(aθ)
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where λl creates an at least exponential wedge between ψout
l and ϕ.

Step 2.

We need to additionally analyze ψ̂in
l (ξ)− ψ̂out

l (ξ):

ψ̂in
l (ξ)− ψ̂out

l (ξ)

=

∫ +∞

a
e−ξaθ

[ ∫ aθ

a
λl(aψ)ϕ(aψ)ψl(aθ; aψ) daψ − ϕ(aθ)λl(aθ)

∫ +∞

aθ

ψl(aψ; aθ) daψ

]
daθ

=

∫ +∞

a
e−ξaθ

[ ∫ +∞

a
λl(aψ)ϕ(aψ)ψl(aθ; aψ) daψ − ϕ(aθ)λl(aθ)

∫ +∞

a
ψl(aψ; aθ) daψ

]
daθ

=

∫ +∞

a

∫ +∞

a
e−ξaθλl(aψ)ϕ(aψ)ψl(aθ; aψ) daψ daθ −

∫ +∞

a

∫ +∞

a
e−ξaθϕ(aθ)λl(aθ)ψl(aψ; aθ) daψ daθ

=

∫ +∞

a

∫ +∞

a
e−ξaψλl(aθ)ϕ(aθ)ψl(aψ; aθ) daψ daθ −

∫ +∞

a

∫ +∞

a
e−ξaθϕ(aθ)λl(aθ)ψl(aψ; aθ) daψ daθ

=

∫ +∞

a

∫ +∞

a
(e−ξaψ − e−ξaθ)λl(aθ)ϕ(aθ)ψl(aψ; aθ) daψ daθ

Note that when ξ < 0,

(e−ξaψ − e−ξaθ)ψl(aψ; aθ)

≥ 0, if aψ ≥ aθ

= 0, if aψ < aθ

Hence ψ̂in
l (ξ)− ψ̂out

l (ξ) > 0 when ξ → −∞.

For the extended model, there is an additional term ψ̂in
l (ξ)− ψ̂out

l (ξ) on the left hand side of A54.

It is easy to see that the logic still goes through under the extended model.

Step 3. and Step 4.

Same as in the baseline model.

H Computation

H.1 Numerical calculation of γ

γ generally does not have an explicit form and needs to be recovered from γ′ by:

γ(Zθ) =

∫ Zθ

0
γ′(Z) dZ

using the fact that γ(0) = 0.

Note, however, that γ′(Zθ) ∼ O(Z
− 1
σ

θ ) as Zθ → 0+ so that the integral above is improper around 0.
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The improper integral is theoretically well-defined as 1
σ < 1 but can lead to inaccurate numerical

results. To resolve the issue, do a change of variable of Z = ξs with s = σ
σ−1 for the integral:

γ(Zθ) =

∫ Z
1/s
θ

0
γ′(ξs) d(ξs)

=

∫ Z
1/s
θ

0
sC

[
1 +

1

σ
ξks

]−σ−σ
kσσ

dξ (A64)

The integrand tends to sC as ξ → 0+ so that the integral is proper. Equation A64 is used for

numerically calculating γ.

H.2 Overall algorithm for travelling wave

This section summarizes the computational algorithm at a high level. Incumbent learning is only

present under the extended model: I will use square brackets
[ ]

to single out these parts in this

and subsequent sections.

Algorithm 1 (Travelling Wave).

Initialize a, g, M and ϕ. Initialize tolerance and some ϵ > tolerance. Choose

a dampening parameter ∈ (0, 1) for the updates.

While ϵ > tolerance

1. Discretize the grid between a and a.

2. Solve the static problem per period based on M and ϕ; get sales, profit

and death rate for each firm.

3. Use ϕ to parameterize
[
ψl and

]
ψe.

4. Solve the HJB to get the innovation
[
/learning

]
decision of incumbents and

the value function V .

5. Solve the entry decision based on ψe and V .

6. (a) Solve the KFE to get an updated distribution ϕ̃.

(b) If ϕ̃ implies A = 1, continue to the next step. Otherwise, adjust g

and return to step 6a. The iteration gives an updated growth rate g.

7. Update a based on ϕ̃, M and the break-even condition 15.

8. Update M by the balanced entry/exit condition 48.
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9. ϵ = max |ϕ̃− ϕ|.

end

H.3 Algorithm for solving the HJB

For the baseline model, the HJB and KF equations are solved using the finite difference method with

an implicit scheme à la Barles and Souganidis (1991).88 In the extended model with large jumps

due to incumbent learning, I use instead the explicit-implicit scheme à la Cont and Voltchkova

(2005) which can be seen as an extension of Barles and Souganidis (1991).89 When there are large

jumps, an implicit scheme needs to invert a high-dimensional non-sparse matrix at each step of the

update and is thus computationally costly. The explicit-implicit scheme deals with the jumps in a

computationally efficient way, while ensuring unconditional stability.

More specifically, denote n = 0, . . . , N to be the index of grid points such that ã0 = ã and

ãN = ã. The grid is equally spaced with ∆ã between two adjacent points. I have slightly abused

the notation by putting n on the subscript: they should not be understood as θ in the previous

sections. Similarly, denote Ṽn to be the value function at these points, i.e. Ṽn = Ṽ (ãn). Use the

finite difference for approximating the first and second derivatives:

Ṽ ′(ãn) ≈
Ṽn − Ṽn−1

−∆ã
(A65)

Ṽ ′′(ãn) ≈
Ṽn+1 − 2Ṽn + Ṽn−1

(∆ã)2
(A66)

I have used the backward difference for A65 as the drift term in the HJB, −1
2ν

2 − g, is always

negative. This “upwind” approach ensures the monotonicity of the numerical scheme and is a

precondition for its convergence. The boundary conditions are incorporated as:

Ṽ (ã0) = 0

Ṽ (ãN ) = Ṽ (ãN+1)

Thus the term [−1
2ν

2 − g
]
Ṽ ′(ã) + 1

2ν
2Ṽ ′′(ã) can be represented as (F1 + F2)Ṽ in matrix forms,

88See Achdou et al. (2022) for a discussion on Barles and Souganidis (1991) and its application in the economics
literature.

89See also Cont and Tankov (2003).
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where Ṽ = [Ṽ0, · · · , ṼN ]⊺ and

F1 =



0 0 0 0 . . . 0 0 0

0 0 0 0 . . . 0 0 0

0 ν2/2+g
∆ã −ν2/2+g

∆ã 0 . . . 0 0 0

0 0 ν2/2+g
∆ã −ν2/2+g

∆ã . . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . −ν2/2+g
∆ã 0 0

0 0 0 0 . . . ν2/2+g
∆ã −ν2/2+g

∆ã 0

0 0 0 0 . . . 0 ν2/2+g
∆ã −ν2/2+g

∆ã



F2 =



0 0 0 0 . . . 0 0 0

0 − ν2

(∆ã)2
ν2

2(∆ã)2
0 . . . 0 0 0

0 ν2

2(∆ã)2
− ν2

(∆ã)2
ν2

2(∆ã)2
. . . 0 0 0

0 0 ν2

2(∆ã)2
− ν2

(∆ã)2
. . . 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 . . . − ν2

(∆ã)2
ν2

2(∆ã)2
0

0 0 0 0 . . . ν2

2(∆ã)2
− ν2

(∆ã)2
ν2

2(∆ã)2

0 0 0 0 . . . 0 ν2

2(∆ã)2
− ν2

2(∆ã)2


Note that firms at position n = 1 die from the left boundary at the rate of ν2

2(∆ã)2
due to the Brownian

motion, but not due to the drift term. This comes from the theoretical result of Section F.2: the

Brownian motion dominates the drift as ∆t→ 0+.

The innovation term λi(ã)[Ṽ (ã+ q)− Ṽ (ã)], where λi = 0 if not chosen in the extended model, is

approximated by λi(ã)qṼ
′(ã) and discretized by F i,D3 Ṽ , where

F i,D3 =



0 0 0 0 . . . 0 0 0

0 −λi,1q
∆ã

λi,1q
∆ã 0 . . . 0 0 0

0 0 −λi,2q
∆ã

λi,2q
∆ã . . . 0 0 0

0 0 0 −λi,3q
∆ã . . . 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 . . . −λi,N−2q
∆ã

λi,N−2q
∆ã 0

0 0 0 0 . . . 0 −λi,N−1q
∆ã

λi,N−1q
∆ã

0 0 0 0 . . . 0 0 0


(A67)

and λi,n = λi(ãn).[
Incumbent learning corresponds to the integral term λl(ã)

∫
(ã,+∞)

[
Ṽ (ãψ)− Ṽ (ã)

]
ψl(ãψ; ã, ϕ̃) dãψ
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in the HJB, where λl = 0 if not chosen. Note that

λl(ã)

∫
(ã,+∞)

[
Ṽ (ãψ)− Ṽ (ã)

]
ψl(ãψ; ã, ϕ̃) dãψ

=λl(ã)

∫
(ã,+∞)

Ṽ (ãψ)ψl(ãψ; ã, ϕ̃) dãψ − λl(ã)

∫
(ã,+∞)

ψl(ãψ; ã, ϕ̃) dãψṼ (ã) (A68)

Denote ψl,nk = ψl(ãk; ãn), λl,n = λl(ãn), pl,nk = λl,nψl,nk∆ã and pl,n =
∑N

k=n+1 pl,nk. Then the

first term in the last line is discretized as F l,ND3 Ṽ , where

F l,ND3 =



0 0 0 0 . . . 0 0 0

0 0 pl,12 pl,13 . . . pl,1N−2 pl,1N−1 pl,1N

0 0 0 pl,23 . . . pl,2N−2 pl,2N−1 pl,2N

0 0 0 0 . . . pl,3N−2 pl,3N−1 pl,3N
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . 0 pl,N−2N−1 pl,N−2N

0 0 0 0 . . . 0 0 pl,N−1N

0 0 0 0 . . . 0 0 0


(A69)

and the second term in A68 is discretized as F l,D3 Ṽ , where

F l,D3 =



0 0 0 0 . . . 0 0 0

0 −pl,1 0 0 . . . 0 0 0

0 0 −pl,2 0 . . . 0 0 0

0 0 0 −pl,3 . . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . −pl,N−2 0 0

0 0 0 0 . . . 0 −pl,N−1 0

0 0 0 0 . . . 0 0 0


(A70)

Denote F l3 = F l,D3 +F l,ND3 , then F l3 is the discrete version of the incumbent learning’s infinitesimal

generator. Because jumps are non-local, the non-zero elements of F l3 lie outside the tridiagonal area

of the matrix. For computational efficiency, I have separated it into two parts, the diagonal part

F l,D3 and the non-diagonal part F l,ND3 where ND stands for “non-diagonal”.90 Such a separation

will be the basis of the explicit-implicit scheme.
]

90One can also put the first upper diagonal in F l,D3 instead of in F l,ND3 .
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Finally, denote λd,n = λd(ãn) for firm death. Then −λd(ãθ; ϕ̃M )Ṽ is discretized as F4Ṽ , where

F4 =



0 0 0 0 . . . 0 0 0

0 −λd,1 0 0 . . . 0 0 0

0 0 −λd,2 0 . . . 0 0 0

0 0 0 −λd,3 . . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . −λd,N−2 0 0

0 0 0 0 . . . 0 −λd,N−1 0

0 0 0 0 . . . 0 0 −λd,N


I use an implicit scheme for solving the HJB in the baseline model:

(r − g)Ṽ m+1 = Π− f − R̃+ FṼ m+1 +
Ṽ m − Ṽ m+1

∆t

⇒Ṽ m+1 =
[
(r − g +

1

∆t
)I − F

]−1[
Π− f − R̃+

1

∆t
Ṽ m

]
(A71)

where I is the identity matrix and F = F1 + F2 + F i,D3 + F4.[
In the extended model, F = F1+F2+F

i,D
3 +F l,D3 +F l,ND3 +F4 and is non-sparse. Each update of

Ṽ m in the implicit scheme requires an inversion of the matrix (r−g+ 1
∆t)I−F which is non-sparse.

Such an inversion is costly, especially when N is high.

The explicit-implicit scheme resolves the issue by separating F into two parts, FD = F1 + F2 +

F i,D3 + F l,D3 + F4 and FND = F l,ND3 . All the elements of FD lie on the tridiagonal area, making

(r−g+ 1
∆t)I−F

D a sparse matrix and its inversion efficient. More specifically, the explicit-implicit

scheme is:

(r − g)Ṽ m+1 = Π− f − R̃+ FDṼ m+1 + FNDṼ m +
Ṽ m − Ṽ m+1

∆t

⇒Ṽ m+1 =
[
(r − g +

1

∆t
)I − FD

]−1[
Π− f − R̃+ (

1

∆t
I + FND)Ṽ m

]
(A72)

Importantly, like the implicit scheme, the explicit-implicit scheme is unconditionally stable, meaning

that we can choose a large ∆t which speeds up the convergence.
]

To summarize, in step 4 of Algorithm 1, the HJB equation is solved by the following algorithm:

Algorithm 2 (HJB).

Initialize Ṽ m with m = 0. Initialize tolerance and some ϵ > tolerance. Fix
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∆t.

While ϵ > tolerance

1.
[
Choose between innovation and learning based on 60.

]
2. Choose the optimal intensity of innovation

[
/learning

]
based on the first

order condition.

3. Construct F i,D3 defined in A67
[
, F l,D3 in A70 and F l,ND3 in A69

]
based on

optimal choices. Construct F in the baseline model
[
or FD and FND in

the extended model
]
. F in the baseline model

[
or FD in the extended

model
]
is specified as a sparse matrix.

4. Solve the linear system of the implicit scheme A71 in the baseline model[
or the explicit-implicit scheme A72 in the extended model

]
to get Ṽ m+1.

5. ϵ = max |Ṽ m+1 − Ṽ m|.

end

[
The discrete choice between innovation and learning introduces a discontinuity in the extended

model, i.e. the argmax operator is discontinuous. Even though it almost never causes a problem in

practice, using softmax instead of argmax can make the algorithm more robust, as softmax smooths

the transition from one choice to another. The smoothing only occurs in a small neighborhood of

the discontinuous point so that there is little difference in the model solution.
]

H.4 Algorithm for solving the KF

A similar implicit scheme is used for solving the KF equation in the baseline model:

ϕ̃m+1 − ϕ̃m

∆t
= F ⊺ϕ̃m+1 +

λeMe

M
ψe

⇒ϕ̃m+1 =
[ 1

∆t
I − F ⊺

]−1[ 1

∆t
ϕ̃m +

λeMe

M
ψe

]
(A73)

Note that the superscript m denotes the number of iterations in computations, not the measure of

firms.

110



[
A similar explicit-implicit scheme is used for solving the KF equation in the extended model:

ϕ̃m+1 − ϕ̃m

∆t
= (FD)⊺ϕ̃m+1 + (FND)⊺ϕ̃m +

λeMe

M
ψe

⇒ϕ̃m+1 =
[ 1

∆t
I − (FD)⊺

]−1[( 1

∆t
I + (FND)⊺

)
ϕ̃m +

λeMe

M
ψe

]
(A74)

]
We normalize ϕ̃ each update to make sure it conserves its mass and integrates into 1.

To summarize, in step 6a of Algorithm 1, the KF equation is solved by the following algorithm:

Algorithm 3 (KF).

Initialize ϕ̃m with m = 0. Initialize tolerance and some ϵ > tolerance. Fix

∆t.

While ϵ > tolerance

1. From Algorithm 2, take F in the baseline model
[
or FD and FND in the

extended model
]
. Solve ϕ̃m+1 by the implicit scheme A73 in the baseline

model
[
or the explicit-implicit scheme A74 in the extended model

]
.

2. Normalize ϕ̃m+1 so that it integrates into 1, i.e. it is a PDF.

3. ϵ = max |ϕ̃m+1 − ϕ̃m|.

end

H.5 Algorithm for solving the growth rate

Given a specific growth rate, the previous section solves the equilibrium distribution which implies

an aggregate productivity. The actual growth rate is the one which makes the aggregate produc-

tivity to be 1 according to Definition 1. Thus the algorithm for solving the aggregate growth rate,

i.e. step 6 of Algorithm 1, is the following:

Algorithm 4 (Growth).

Take g from the previous steps of Algorithm 1.
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1. Solve the KF based on Algorithm 3 to get ϕ̃.

2. Solve the static problem based on ϕ̃ and M to get the aggregate log TFP

log(A).

(a) If | log(A)| < tolerance, the problem is solved.

(b) If log(A) > tolerance, increase g; if log(A) < −tolerance, decrease g.

Update F1 and consequently F
[
or FD

]
based on the updated g. Go

back to Step 1.

H.6 Balanced entry/exit condition

The discretized version of the balanced entry/exit condition 48 is:

λeMe =M
[ N∑
n=1

λd,nϕn∆ã+
ν2

2∆ã
ϕ1

]
where ϕn = ϕ̃(ãn).

H.7 Job creation and job destruction due to idiosyncratic shocks

Denote X to be a random variable with distribution N (−1
2ν

2−g, ν2). Job creation due to the drift

term and the Brownian motion of incumbents at position θ is:

∆Lc,bθ = E
[
[L(aθ +X)− L(aθ)]1{X>0}

]
=

∫ +∞

0
[L(aθ + x)− L(aθ)]

1√
2πν

exp
[
− 1

2

(x+ 1
2ν

2 + g

ν

)2]
dx

Do a change of variable of x = ν
√
2y, then

∆Lc,bθ =

∫ +∞

0

1

2
√
π
[L(aθ+ν

√
2y)−L(aθ)] exp

[
−(

1

2
ν2+g)

1

ν

√
2y− 1

2ν2
(
1

2
ν2+g)2

]
exp(−y)y−

1
2 dy

The integration can be calculated using the Generalized Gauss–Laguerre quadrature with the form∫ +∞

0
yse−yf(y) dy

by setting s = −1
2 and

f(y) =
1

2
√
π
[L(aθ + ν

√
2y)− L(aθ)] exp

[
− (

1

2
ν2 + g)

1

ν

√
2y − 1

2ν2
(
1

2
ν2 + g)2

]
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Similarly, job destruction due to the drift and the Brownian motion of incumbents at position θ is:

∆Ld,bθ = E
[
[L(aθ)− L(aθ +X)]1{X<0}

]
=

∫ 0

−∞
[L(aθ)− L(aθ + x)]

1√
2πν

exp
[
− 1

2

(x+ 1
2ν

2 + g

ν

)2]
dx

Do a change of variable of x = −ν
√
2y, then

∆Ld,bθ =

∫ +∞

0

1

2
√
π
[L(aθ)−L(aθ − ν

√
2y)] exp

[
(
1

2
ν2 + g)

1

ν

√
2y− 1

2ν2
(
1

2
ν2 + g)2

]
exp(−y)y−

1
2 dy

which can similarly be calculated by the Generalized Gauss–Laguerre quadrature with s = −1
2 and

f(y) =
1

2
√
π
[L(aθ)− L(aθ − ν

√
2y)] exp

[
(
1

2
ν2 + g)

1

ν

√
2y − 1

2ν2
(
1

2
ν2 + g)2

]
H.8 Growth contribution of net entry

From the proof of Proposition 1, it is clear that P/w is a functional of ϕM which can be denoted

by

P/w = P(ϕM )

Hence by equations 17 and 19, A is also a functional of ϕM which can be denoted by

A = A(ϕM )

Note that the definition of A differs slightly from the one in Proposition 1: it is now expressed as

a functional of ϕM . The Fréchet derivative of A, as well as its application in defining the growth

contribution of net entry, is summarized in the following proposition:

Proposition A22 (Growth Contribution of Net Entry).

1.

A′(ϕM )h = −A2
[ ∫

R
Zθe

−aθh(aθ) daθ + P ′(ϕM )h ·
∫
R

∂Z

∂(P/w)
(aθ, P/w)e

−aθϕM (aθ) daθ

]
(A75)

where

P ′(ϕM )h = −
[ ∫

R
γ′(Zθ)

∂Z

∂(P/w)
(aθ, P/w)ϕ

M (aθ) daθ

]−1
∫
R
γ(Zθ)h(aθ) daθ (A76)

and Z(aθ, P/w) is defined implicitly in equation 19.

2. The growth contribution of net entry is

1

A
A′(ϕM )

[
λeMeψe − λd(aθ;ϕ

M )ϕM
]

(A77)
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where A′ is given in A75.

Proof.

1. Write equation 4 as: ∫
R
γ
(
Z(aθ,P(ϕM ))

)
ϕM (aθ) daθ = 1

The LHS is a functional of ϕM . Take the Fréchet derivative with respect to ϕM on both sides,

using the chain rule for Fréchet derivatives:∫
R
γ′(Zθ)

∂Z

∂(P/w)
(aθ, P/w) · P ′(ϕM )h · ϕM (aθ) daθ +

∫
R
γ(Zθ)h(aθ) daθ = 0

which gives equation A76.

For the Fréchet derivative of A, rewrite 17 as:

A = A(ϕM ) =
[ ∫

R
Z(aθ,P(ϕM ))e−aθϕM (aθ) daθ

]−1

Hence equation A75 can be obtained by taking the Fréchet derivative of the above equation.

2. Obvious.

I Calibration

I.1 ω as index

Denote ω = − log(1−θ) ∈ [0,+∞), where θ as before is the CDF of the firm along some distribution,

for instance the value-added distribution. The incentive to use ω instead of θ to index firms comes

from the Pareto tail. As a simple example, consider the case in which the value added x follows

a Pareto distribution with Parameter η. The notations in equations A78-A79 are only temporary

and should not be confused with other parts of the paper.

P(x ≤ x) = 1− (
xm
x

)η, ∀x ≥ xm (A78)

with PDF ηxηm
xη+1 . Then

θ = 1− (
xm
xθ

)η
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The complementary cumulative value-added share Ξrθ, which is the value-added share of firms

between [θ, 1] among the total value added, is

Ξrθ =

∫ +∞
xθ

x ηx
η
m

xη+1 dx∫ +∞
xm

x ηx
η
m

xη+1 dx

= (
xm
xθ

)η−1

Hence

log Ξrθ = −η − 1

η
ω (A79)

which is a linear function between ω and log Ξrθ. In reality, the value-added distribution is Pareto

at the right tail but not overall. Non-linearity would thus occur for ω close to 0. Nonetheless, the

functional form is still globally close to a polynomial, which makes it easy to fit the data points.

I.2 Value added

The US Census Bureau publishes data on value added, material cost and number of establishments

for each employment size range of manufacturing establishments. The value added is, however,

overstated as the Census Bureau does not collect information on service input and thus does not

deduce it from sales when calculating value added. I use the KLEMS data which reports material

input and service input at the sectoral level to adjust for this bias. Assuming the same proportion

of material input versus service input across size bins, service input can be inferred from material

input in the Census of Manufacturing for each size bin. It is then subtracted from the published

value added to obtain the corrected version to be used subsequently. See Table A9 for the adjusted

data.

I fit a 3rd-order polynomial of log Ξr(ω) on ω, i.e. log Ξr(ω) = c1ω + c2ω
2 + c3ω

3. There is no

intercept in order to satisfy Ξr(0) = 1. See Figure A4a for the data and fitted curve. Denote ξθ as

the value-added density of firm θ, i.e. Ξrθ =
∫ 1
θ ξθ dθ. With a change of variable of θ = 1− e−ω,

log Ξr(ω) = log

∫ +∞

ω
ξ(ω)e−ω dω

Take the derivative w.r.t. ω and rearrange the terms:

ξ(ω) = −eωΞr(ω)d log Ξ
r(ω)

dω

I.3 Labor share

Data on labor share across employment size bins also come from the Census of Manufacturing. A

few adjustments are needed: (1) Payroll is adjusted by fringe benefits, as the former is narrowly
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defined in the Census of Manufacturing. The fringe/narrow payroll ratio comes from the Annual

Survey of Manufacturing and is assumed to be constant across employment size bins. (2) Since the

model does not feature heterogeneous wages, the average payroll per employee of each size bin is

adjusted to the sectoral average. (3) The model does not feature capital, so the labor share in the

data is adjusted to be consistent with the model. See Table A9 for the adjusted data.

For the adjustment regarding capital, consider the following production function with capital:

Yθ = AθK
1−s
θ Lsθ (A80)

The optimal production decision per period is given by:

max
Kθ,Lθ

PθYθ − wLθ − rKθ

s.t. A80 and 6

The first order conditions are:

∂Pθ
∂Yθ

∂Yθ
∂Lθ

Yθ + Pθ
∂Yθ
∂Lθ

= w (A81)

∂Pθ
∂Yθ

∂Yθ
∂Kθ

Yθ + Pθ
∂Yθ
∂Kθ

= r (A82)

Rewrite equation A81:

w =
∂Yθ
∂Lθ

[∂(Pθ/P )
∂(Yθ/Y )

Yθ
Y
P + Pθ

]
=
∂Yθ
∂Lθ

P
[
γ′′(Zθ)Zθ + γ′(Zθ)

]
=
∂Yθ
∂Lθ

Pγ′(Zθ)
[
1− 1

σθ

]
or equivalently,

Pθ

w/ ∂Yθ∂Lθ

=
σθ

σθ − 1
(A83)

Similarly, A82 can be rewritten as:
Pθ

r/ ∂Yθ∂Kθ

=
σθ

σθ − 1
(A84)

The labor share of firm θ is then:

χθ =
wLθ
PθYθ

=
w

PθAθK
1−s
θ Ls−1

θ

= s
w/ ∂Yθ∂Lθ

Pθ
= s

σθ − 1

σθ

where the last step uses equation A83.
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Employment Number of
θ ω

Value
Ξr

Labor share Labor share
smaller than establishments added adjusted final

5 141992 0.405 0.519 17.4 0.989 0.649 0.853
10 49284 0.545 0.788 22.7 0.973 0.627 0.824
20 50824 0.690 1.171 46.6 0.943 0.638 0.854
50 51660 0.837 1.816 112.0 0.867 0.632 0.846

100 25883 0.911 2.420 139.0 0.771 0.587 0.780
250 20346 0.969 3.477 269.0 0.581 0.538 0.746
500 6853 0.989 4.478 220.0 0.424 0.505 0.720

1000 2720 0.996 5.624 214.0 0.273 0.435 0.637
2500 1025 0.999 7.283 195.0 0.134 0.436 0.578
+∞ 241 1.000 +∞ 185.0 0.000 0.459 0.482

Table A9: Value added and labor share in the US Census of Manufacturing. Value added is in
billions of USD. “Labor share adjusted data” is after the adjustments of value added and fringe
benefits. “Labor share final” reports the final adjusted version.

Hence the labor share in the data should be divided by s to speak to the model. Intuitively, the

production function of the data exhibits constant returns to scale for the combination of capital

and labor, while its counterpart in the model exhibits constant returns to scale for labor. The labor

share in the data should thus be adjusted by s to recover the labor share in the model. s can be

estimated by the ratio between capital expenditure and payroll for each employment size bin. In

particular, A83 and A84 imply:
s

1− s
=
wLθ
rKθ

where wLθ is the payroll after the first two steps of adjustment and rKθ is capital expenditure.

The latter needs to be imputed as the “total capital expenditures” in the census data does not

include equity cost. The census variable does, however, provide an estimate of the share of capital

stock across size bins among the total capital stock, assuming that the per unit capital cost and

depreciation rate are the same across size bins. I estimate the capital stock of each size bin by

multiplying the share with the total manufacturing capital stock in BEA fixed assets tables. It is

subsequently multiplied by the required return of capital estimated by Barkai (2020) to obtain rKθ

for each size bin.

A final adjustment (4) is sometimes needed for the upper end of the labor share. When the labor

share is close to 1, demand elasticity changes dramatically with the labor share, making σ sensitive

to the data. To resolve this issue, it is useful to calibrate σ with respect to other papers and then

adjust the data points accordingly. I calibrate σ as 6.5, which is in the middle of the range used

in other papers with a nested CES preference under oligopolistic competition (see Atkeson and

Burstein (2008), De Loecker et al. (2021), Gaubert and Itskhoki (2021) and Burstein et al. (2020)).
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(a) Log cumulative value added share (b) Bin-wise labor share

Figure A4: Estimating k.

I.4 Estimation of k and σ

Denote χ(ω) = 1− 1
σ(ω) to be the labor share of firm at position ω, and χ = 1− 1

σ and χ = 1− 1
σ

are the highest and lowest labor share respectively. We have set σ = 6.5 in the last section. σ is set

to 1.93 to match the lowest labor share along size bins in the census data. It remains to estimate

k which governs the transition from σ to σ.

Denote ξθ as the value-added of firm θ over sectoral value added, i.e. firm θ’s market share in terms

of value added. Denote χθ as the labor share of firm θ. The data gives the average labor share for

a few size bins of establishments. Formally, for j ∈ {1, · · · , n−1}, we have the bin-wise labor share

X[θj ,θj+1] =

∫ θj+1

θj
χθξθ dθ∫ θj+1

θj
ξθ dθ

where 0 = θ1 < θ2 < · · · < θn = 1.

ξθ is recovered from the value added across size bins. To take care of the Pareto tail, I fit the

cumulated value added share from the right tail as a function of ω = − log(1−θ). Formally, denote

Ξrθ =
∫ 1
θ ξθ dθ as the cumulated value added share from the right tail. Figure A4a fits log(Ξr) as a

3-order polynomial of ω.

118



Note that

d log ξ(ω)

dω
=

d log P (ω)Y (ω)
P/ζ·Y

dω

=
d log P (ω)

P

dω
+

d log Y (ω)
Y

dω

= χ(z(ω))
dz(ω)

dω

where

χ(z(ω)) = χ+
χ− χ

exp[−kz(ω) + log(σ/σ)] + 1
(A85)

Denote X(z) to be a primitive of χ(z), then

d log ξ(ω)

dω
=

dX

dz

dz

dω
=

dX

dω

⇒ log ξ = X + C (A86)

It is easy to check that X(z) is

X(z) = χz +
χ− χ

k
log

[
1 + exp[kz(ω)− log(σ/σ)]

]
Thus given ξ(ω) estimated in Section I.2, z(ω) can be obtained by solving the function A86.

Plugging z(ω) into A85, we get χ as a function of ω. For i ∈ {1, · · · , n − 1}, we get the model

counterpart of X[θi,θi+1]:

X̂[θi,θi+1] =

∫ θi+1

θi
χθξθ dθ∫ θi+1

θi
ξθ dθ

=

∫ ωi+1

ωi
χ(ω)ξ(ω)e−ω dω

Ξr(ωi)− Ξr(ωi+1)

It remains to compare X[θi,θi+1] with X̂[θi,θi+1], where i ∈ {1, · · · , n − 1}, and take the k and C

which minimize their distance, i.e.

k∗, C∗ = argmin
k,C

n−1∑
i=1

[
X̂[θi,θi+1] −X[θi,θi+1]

]2
See Figure A4b. k is then adjusted by the ratio between the employment Pareto tail index of all

firms and that of manufacturing establishments, so that it governs the transition along the firm

size distribution. k is estimated to be 0.32.

J Comparative statics under the extended model

Figure A5 shows the changes in innovation/learning intensities, as well as in equilibrium distribu-

tions. Table A10 calculates the moment changes as ideas get harder to find, and compares them
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(a) λc (b) log(ϕ̃)

(c) log(PDF) of log(PθỸθ) (d) Markup µ

Figure A5: Comparison between 1980 and 2020 under the extended model. Panel (a):
learning/innovation intensity; Panel (b): log PDF of log productivity; Panel (c): log PDF of
log sales; Panel (d): cost-weighted markup distribution.

with the data. Table A11 conducts a Melitz-Polanec decomposition of markup and labor share

changes: the great majority of the changes still comes from between-firm reallocation.
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Moment Data ∆ Model ∆

Sales share of top 1% firms 10.07% 9.33%
TFP growth -0.41% −0.41%
Cost-weighted markup 11.40% 8.53%
Labor share -5.39% −3.38%
Job creation by birth (entry) -2.70% −1.79%
Job destruction by death (exit) -1.67% −1.66%
Job creation rate -5.13% −2.82%
Job destruction rate -4.06% −2.87%
Job reallocation rate -8.12% −5.69%
R&D over value added 64.50% 62.91%

Table A10: Moment changes between 1980 and 2020, extended model and data. All the changes
are non-targeted.

Within Between Net entry Total

∆Labor share −0.30% −3.05% −0.03% −3.38%

∆Markup 0.73% 7.82% −0.02% 8.53%

Table A11: Melitz-Polanec decomposition of markup and labor share changes between 1980 and
2020 under the extended model.
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