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Abstract

Skewness in the cross-sectional distribution of firms’ sales growth rates is procyclical: In
recessions, some firms experience particularly poor growth rate outcomes. This paper studies the
role of these poor growth rate performers for aggregate fluctuations. There are two key findings.
First, some large firms experience very poor sales growth rates in recessions. Because these firms
are so large, the vast majority of the decline in sales levels in US recessions is driven by the firms
with the worst growth rates. Second, several commonly studied aggregate shocks induce skewed
responses across firms and can explain the close comovement of cross-sectional skewness with
the business cycle. Importantly, the responses across the very largest firms in the US economy
are also skewed, with some large firms showing strong responses to aggregate shocks. Because
the firm size distribution is fat-tailed, these large firms account for a significant share of the
aggregate fluctuations following aggregate shocks. This provides a new interpretation of how
aggregate shocks induce business cycle fluctuations: aggregate shocks transmit through granular
responses across firms, with much of the response accounted for by firms that are both large and
responsive.
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1 Introduction

Skewness in the distribution of sales growth rates across firms (micro skewness) is strongly procyclical
(Salgado et al. (2023)). Figure 1 plots the aggregate sales growth rate in the U.S. against the
cross-sectional skewness across the sales growth rates of U.S. public firms. The correlation is 0.8.
Skewness is low in recessions, suggesting some firms face particularly bad growth rates while there is
limited potential for good growth rate outcomes.

This paper asks and answers two questions: 1) Does micro skewness matter for aggregate fluc-
tuations? Yes, micro skewness matters for aggregate fluctuations because it captures the poor
performance of some large firms in recessions. 2) What is the origin of procyclical micro skewness? I
show that firms’ heterogeneous responses to aggregate shocks induce procyclical skewness. Impor-
tantly, even the responses across the largest firms of the US economy are skewed such that some
large firms respond strongly to aggregate shocks. Because the size distribution is fat-tailed, much of
the aggregate effects of aggregate shocks can be traced to a handful of large and responsive firms. In
this sense, the economy’s granular response to aggregate shocks provides an interpretation for the
procyclicality of micro skewness.

This paper starts by studying the implications of micro skewness for aggregate fluctuations. A

Figure 1: Micro skewness vs aggregate activity

Note: The figure compares skewness across Compustat firms’ year-over-year real sales growth to the
aggregate sales growth rate. Skewness is estimated using 90% Kelley skewness. The sample period is
1984Q2-2021Q4.

stronger skew towards poor growth rate outcomes in recessions need not be relevant for aggregate
sales growth if those firms with poor growth rate outcomes are small. However, there is evidence that
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at least some large firms experience very weak growth rates in downturns. Using Compustat data, I
document the importance of firms that are both large and responsive in several ways. First, the vast
majority of the decline in the level of sales in a recession is explained by the worst performers in
terms of growth rates. Second, while the largest firms are less volatile than smaller firms, they face
a probability of 18% to end up in the bottom 20% of the sales growth distribution in a recession.
In contrast, they face almost no upside: The probability of experiencing a growth rate in the top
20% of growth rate outcomes is only 6%. This asymmetry between downside and upside risk exists
in every recession in the sample but is only present for large firms. In this sense, large firms can
be considered more procyclical, even though they are less volatile than small firms. Third, and in
line with this interpretation, the time series of large firms’ growth rates are on average less volatile
than those of smaller firms but are not less skewed. Fourth, skewness across the largest firms is more
closely associated with aggregate fluctuations than for other size bins.

What explains the procyclicality of micro skewness? I propose firms’ heterogeneous responses to
aggregate shocks as a mechanism. To motivate this hypothesis, I decompose the cross-section of sales
growth rates into aggregate drivers and idiosyncratic components and measure the contribution of
these components to skewness in growth rates. The aggregate component explains 80% of the business
cycle pattern in micro skewness, even though it only accounts for a small share of overall variation
in firm growth rates. Skewness in idiosyncratic shocks is therefore not the dominant driver of the
skewness pattern. This result does not contrast with recent findings of skewness in the cross-section
of TFP shocks (Salgado et al. (2023)). Instead, I argue that these shocks are not large enough to
contribute to skewness in growth rates and are dominated by the skewness in aggregate drivers.

To move beyond correlations, I use local projections to study the comovement of the impulse
responses of aggregate sales growth and micro skewness following six different types of aggregate
shocks: monetary, oil supply, credit, uncertainty, sentiment, and TFP news shocks. These shocks
reflect many of the most prominently studied aggregate shocks to explain business cycle fluctuations,
are all different in nature, and are obtained using six different identification schemes. In response
to any of the six shocks, aggregate growth and micro skewness decline in a closely correlated man-
ner. I also compare the contributions of aggregate shocks to fluctuations in skewness against the
contributions from a new series of idiosyncratic shocks. A variance decomposition shows that around
75% of the explained variance can be accounted for by aggregate shocks, compared to 25% for the
idiosyncratic shocks. This supports the idea that idiosyncratic shocks can be important sources of
business cycle fluctuations (Gabaix (2011), Carvalho & Grassi (2019)) while motivating this papers’
focus on aggregate shocks.

Estimating the responses of micro skewness and aggregate sales growth bottom-up from firm-level
IRFs confirms these results. I estimate firm-level impulse responses of their sales growth rates to
aggregate shocks. Given the distribution of firm IRFs, the implied response of aggregate sales growth
can be constructed as the size-weighted average of firm IRFs. Similarly, the response of micro
skewness can be constructed from the cross section of firm IRFs. These bottom-up estimates show
that both micro skewness and aggregate sales decline significantly following contractionary aggregate
shocks. Therefore, heterogeneous responses to aggregate shocks provide an explanation for procyclical
micro skewness.
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Based on the distribution of firm IRFs, I show that the impulse responses of large firms are more
skewed than the responses of small firms. The differences in the responses of skewness can be large.
For both size groups, the size-weighted aggregate sales responses are closely correlated with the
skewness response. However, because the size distribution is fat-tailed, the responses of large firms
account for the vast majority of the aggregate sales growth response. While small firms may be
more responsive to shocks on average (stronger unweighted mean response) and have more volatile
responses, they have a minor contribution to economy-wide sales growth fluctuations following an
aggregate shock.

The skewed responses of the largest firms provide a new narrative for how aggregate shocks
induce aggregate fluctuations: A large share of the effect of an aggregate shock can be traced to a
small number of very large firms with strong responses to the shock. Based on the firm-level impulse
responses, I estimate that large firms (top 10% of the size distribution) with strong growth rate
responses (bottom 20% of the IRF distribution) make up only 1.6% of all firms but account for one
third of the sales response to an aggregate shock. This result is complementary to the granular
hypothesis by Gabaix (2011): While he shows that idiosyncratic shocks to large firms can induce
significant business cycle fluctuations, I argue that the effects of aggregate shocks are significantly
driven by the responses of some large firms.

Why are some large firms so responsive to aggregate shocks? Identifying the sources of het-
erogeneity in impulse responses turns out to be a challenging task and this paper makes only a
limited contribution in this regard. Most commonly studied firm characteristics do not seem to
explain differences in IRF estimates well. Using both standard OLS and a random forest algorithm,
profitability emerges as a potential exception: Firms with lower profitability experience significantly
larger sales declines following contractionary aggregate shocks. However, the models struggle to
explain most of the heterogeneity in the data and more work will be needed to pin down the sources
of large firms’ vulnerabilities.

The results of this paper are based on Compustat data. Compustat is the most widely used
data set for US public firms and provides multiple benefits. It covers a long sample period at the
quarterly frequency and contains rich information on firm characteristics. This is indispensible for
studying the role of different firm characteristics in shaping the responsivess of firms to reliably
identified aggregate shocks. The most obvious drawback of Compustat is the underpresentation of
small firms. This bias does not affect the results of this paper since the focus is on the largest firms
in the economy. However, in comparing the responses of the very largest firms to the rest of the
sample, I will commonly refer to ’large’ and ’small’ firms throughout the text. This is for ease of
reading only and these labels should be interpreted within the confines of the firm size distribution
that Compustat provides. The ’small’ firms are significantly larger than the average firm in the
United States and ’large’ firms represent the very top of the size distribution.

An extensive appendix confirms the procyclicality of micro skewness in the Compustat sample
in detail. I pay particular attention to the robustness across different skewness measures and the
role of outliers. Because the third moment is highly sensitive to outlier observations, I find that
skewness measures based on quantiles provide a more reliable assessment of asymmetries in the
distribution. Outliers are pervasive in the Compustat data and require careful cleaning procedures.
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As I demonstrate, the wrong treatment of outliers can dramatically change the results for skewness
measurement.

The appendix also provides additional motivation for studying micro skewness. The cross-sectional
dispersion, a common object of study in the firm heterogeneity literature (for example, see Bloom
et al. (2018)) is uncorrelated with aggregate fluctuations once controlling for micro skewness. The
association between skewness and aggregate fluctuations increases with the level of granularity, and
is significantly weaker when measuring skewness across 3-digit NAICS industries instead of across
firms. The relation between micro skewness and aggregate growth is strongest contemporaneously,
with weaker evidence for lead-lag relationships.

This paper connects to several strands of literature. Most directly, this paper can be placed
within a small literature on the business cycle comovement of firm-level micro skewness. Higson et al.
(2002) and Higson et al. (2004) provide evidence of countercyclical skewness for UK and German
firms. In contrast, Salgado et al. (2023) offer a comprehensive analysis for over 40 countries and find
strong evidence in favor of procyclical skewness. They offer skewed distributions of idiosyncratic
shocks as a possible explanation for this fact. My own analysis confirms the procyclicality of skewness
and suggests that differences in outlier treatment may explain the contrasting findings. Ilut et al.
(2018) use data on US manufacturing establishments to provide evidence of concave firm employment
responses to aggregate shocks. Similarly, my paper provides evidence on the role of heterogeneous
sales responses to aggregate shocks in explaining procyclical skewness.

By focusing on the cross section of firm outcomes, my paper is also related to a large literature on
uncertainty and dispersion. Bloom (2009) revived this literature, followed by important contributions
such as Bachmann & Bayer (2014), Jurado et al. (2015), Bloom et al. (2018), Berger et al. (2020),
and Ludvigson et al. (2021). Fernández-Villaverde & Guerrón-Quintana (2020) and Cascaldi-Garcia
et al. (2023) provide comprehensive reviews. This literature often uses the countercyclical movements
in cross-sectional dispersion as a proxy for uncertainty.1 However, dispersion becomes acyclical once
controlling for skewness, suggesting that changes to micro skewness are the more reliable business
cycle fact. The same finding has already been made for the income distribution (Guvenen et al.
(2014), Guvenen et al. (2022), Busch et al. (2022)).

This paper’s focus on heterogeneous responses to aggregate shocks is directly motivated by a large
literature on firms’ heterogeneous responses to monetary shocks. Recent examples include Ottonello
& Winberry (2020) and Cloyne et al. (2023), who pay great attention to identifying a particular
firm characteristic that best explains differences across firm responses. While these authors focus on
the details of the transmission mechanism of one particular shock, I take a broader perspective by
focusing on a wide range of commonly studied aggregate shocks. This comes at the cost of less depth
as I cannot identify one individual firm characteristic that explains firm’s heterogeneous responses
across six different shocks, with profitability being a potential exception.

Most importantly, this paper contributes to the literature on large firm dynamics. Gabaix (2011)
proposes the granular hypothesis and Carvalho & Grassi (2019) demonstrate within a standard firm
dynamics model that idiosyncratic shocks can account for a sizeable share of aggregate fluctuations.

1Kozeniauskas et al. (2018) demonstrate how shocks to cross-sectional dispersion relate to disagreement and
uncertainty about macroeconomic aggregates.
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Crouzet & Mehrotra (2020) use a representative sample of the US firm size distribution to show that
the very largest firms of the US economy account for nearly all of the business cycle fluctuations
in terms of sales. While large firms are less volatile than small firms, the authors argue that the
difference in volatility is far outweighed by the larger size of large firms. Relatedly, I argue that small
firms are more volatile but not necessarily more skewed: large firms’ responses to contractionary
shocks are predominantly negative, and among the largest firms some firms respond particularly
strongly. Combined with a fat-tailed size distribution, this means that the response of aggregate sales
to aggregate shocks is strongly driven by the response of (some) large firms. The strong correlation
between cross-sectional skewness and aggregate fluctuations can therefore be interpreted as (at least
partly) originating from the strong response of some large firms to aggregate shocks, which explains
both the change in skewness in the cross section and the change in aggregate sales.

Lastly, the procyclicality of micro skewness may provide a micro-founded perspective on the
’plucking property’ of the business cycle (McKay & Reis (2008), Dupraz et al. (2023)): recessions
are deeper than expansions, resulting in negative skewness in the time series of aggregate growth.
Similarly, Adrian et al. (2019) show that upside risks to aggregate growth are stable over time while
downside risks fluctuate with the business cycle. To achieve negatively skewed aggregate growth with
symmetric aggregate shocks, Ilut et al. (2018) suggest concave firm-level responses while Baqaee &
Farhi (2019) and Dew-Becker et al. (2021) suggest aggregation in production networks if production
inputs are complements. Alternatively, the findings from this paper can motivate further research
into the properties of large and responsive firms and their role in shaping the asymmetric response of
aggregate outcomes. Dew-Becker (2022) estimates asymmetries in conditional distributions of firm
and aggregate outcomes using option data, finding that micro skewness is significantly related to
macro volatility and concludes there should be a common shock driving both. I show that aggregate
shocks resulting in micro skewness may provide an explanation for this fact when studying realized
distributions, though it is unclear if the same holds for conditional distributions.

The paper proceeds as follows. Section 2 shortly describes the Compustat sample. Section
3 provides new stylized facts on the downside risks faced by large firms and their contribution
to the fluctuations in aggregate sales. Section 4 studies the role of heterogeneous responses to
aggregate shocks in explaining the comovement between aggregate sales and micro skewness. Section
5 concludes.

2 Data

The analysis uses data on US public firms from Compustat. Compustat is the benchmark firm-level
data set for the United States, providing detailed balance sheet information at the quarterly frequency
over a long sample period. Rich information on firm characteristics is necessary to comprehensively
study the origins of heterogeneous firm responses to aggregate shocks. The quarterly frequency
greatly improves the ability to identify relevant macroeconomic shocks relative to annual data. The
long sample period enables me to cover multiple recessions and draw general conclusions about
skewness facts in the US business cycle. Estimating impulse responses to aggregate shocks at the
firm level also requires a sufficiently long time series for each firm. I am not aware of other data sets
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satisfying these criteria.2

Let si,t be firm i’s real sales in quarter t. Real sales will be the key measure of firm size in this
paper. Year-over-year real sales growth is gi,t = ln (si,t)− ln (si,t−4). The key business cycle indicator
of this paper is aggregate real sales growth, constructed as the size-weighted average of existing firms’
growth rates:

gt =
∑
i gi,tsi,t−4∑
i si,t−4

. (1)

This definition of aggregate sales growth only considers firms that exist in both t and t − 4 and
therefore abstracts from entry and exit dynamics, which could affect the comovement of aggregate
growth and micro skewness but are not the focus of this paper.

The main skewness measure is Kelley skewness:

ksk (Gt) =

Ä
QGt0.9 −Q

Gt
0.5

ä
−
Ä
QGt0.5 −Q

Gt
0.1

ä
QGt0.9 −Q

Gt
0.1

, (2)

where Gt := {gi,t}i=1,...,nt is the set of firm growth rates at time t. Kelley skewness compares the
distance of the 90% quantile of the time-t distribution of firm growth rates (QGt0.9) from the median
(QGt0.5) to the distance of the median from the 10% quantile, rescaled by the overall spread of the
distribution (QGt0.9 −Q

Gt
0.1). If the 90% quantile is further above the median than the 10% quantile is

below the median, the distribution is right-skewed and Kelley skewness is positive. The measure
ranges from −1 to 1. Kelley skewness allows for an easy decomposition of skewness movements into
changes in upper and lower parts of the distribution and is significantly more robust to outliers than
the third moment.

Compustat data features severe outliers for sales growth rates. I carefully check for these outliers
and compare the implications of different cleaning methodologies and skewness definitions for the
procyclicality of micro skewness. Appendix B contains the results. In summary, outliers in growth
rates can be due to data mistakes, sales increases from low base levels, or M&A activity. The third
moment is highly sensitive to the presence of these outliers. After removing the outliers and especially
when using a quantile-based skewness measure such as Kelley skewness, micro skewness is highly
procyclical across a variety of specifications. This supports the evidence from Salgado et al. (2023)
and is in line with findings from the household income literature (Guvenen et al. (2014), Guvenen
et al. (2022), Busch et al. (2022)).

Details on the sample construction are in Appendix A. Besides Compustat, I use data from CRSP
for stock prices, I/B/E/S for sales forecasts, and Worldscope Fundamentals because of its good
coverage of the date of incorporation. All variable definitions are listed in the appendix. The data
cleaning filters out roughly half of the observations from the raw Compustat files. Since estimating
firm-level impulse responses requires a sufficiently long time series for each firm, I focus on firms that
have at least 40 consecutive observations for sales growth. This reduces the sample size further, see
Figure 13. Despite the smaller sample size, the time series of micro skewness looks very similar, see
Figure 14 in Appendix A.

Table 1 compares the full Compustat sample against the cleaned version of firm growth streaks.
2Ottonello & Winberry (2020) use Compustat data for the same reason.
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For comparison, the table also reports summary statistics from the Quarterly Financial Reports
(QFR), which have been used by Crouzet & Mehrotra (2020) to construct a representative sample of
US firms in certain sectors. For example, the QFR can be used to construct a sample accurately
reflecting the firm size distribution of US manufacturing firms, including private firms. Relative to
this representative sample of manufacturing firms, the average firm in the Compustat data (which
is not limited to manufacturing firms) is considerably larger, both in terms of assets (USD 6bn vs
USD43mln) and sales (USD 740mln vs USD 11mln). The sales growth distribution in the QFR
sample is more dispersed and more symmetric than in the Compustat sample with a mean growth
rate closer to zero. Compared to the QFR, leverage and short-term debt are higher in raw Compustat
data but lower in the cleaned data. The number of observations in the cleaned data is roughly half of
the number of observations per quarter in the QFR. Importantly, although the data cleaning affects
multiple firm characteristics on average, the correlation between aggregate sales growth and GDP
growth is similar for both Compustat samples (0.68 vs 0.54). The correlation between micro skewness
and aggregate sales growth, which is the key object of study in this paper, is virtually identical for
both samples (0.84 vs 0.82).

While small firms are strongly underrepresented in Compustat, the results of this paper should

Table 1: Summary Statistics for Compustat Data

Full Compustat Cleaned Sample QFR
Assets (mln. USD) 5,838 6,366 43.2
Sales (mln. USD) 467.4 741.9 10.8
Sales Growth (%) 7.3 6.2 0.63
Q (Sales Growth)0.25 (%) -7.6 -5.6 -25.3
Q (Sales Growth)0.75 (%) 23.5 17.0 26.6
Net Leverage (%) 66 2 20
Short-term debt (%) 34 6 33
Obs./quarter 6,329 2,766 6,122
ρ (Sales Gr., GDP Gr.) 0.68 0.54 –
ρ (Sales Gr., Skew) 0.84 0.82 –

Statistics for QFR are for the manufacturing subset of Crouzet & Mehrotra (2020)
from 1977Q3–2014Q1 and directly taken from their paper. Compustat statistics are for
1983Q3–2014Q1.

be unaffected by this bias. Small firms do exit more frequently, meaning the sample may understate
the relative downside risk of large vs small firms. However, the focus of this paper is neither on
entry/exit dynamics nor on small firms per se. Instead, I argue that the responses of large firms
to aggregate shocks are also skewed and that this feature is crucial for the comovement of micro
skewness and aggregate growth. The correlation between micro skewness and growth – which is the
focus of this paper – is based on aggregate growth computed using only surviving firms, allowing
to exclude entry/exit dynamics from both moments. Despite the underpresentation of small firms,
sales concentration in the sample is still high. The largest 10% of firms account for 70% of sales on
average, and the top 30% account for over 90% of sales. For comparison, the largest 1% of firms in
the QFR sample of Crouzet & Mehrotra (2020) represent ca. 75% of total sales.

An important clarification for the remainder of this paper is in order. For ease of writing, the
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rest of this paper refers to ’small’ and ’large’ firms. These terms should be interpreted within the
confines of the size distribution that Compustat allows to study, acknowledging that ’small’ firms in
Compustat are significantly larger on average than small firms in a representative sample. I do not
suggest that the data allows for an accurate comparison of truly large and truly small firms, but
instead use the terms to refer to relative sizes within the data, arguing that the large firms within
Compustat are still orders of magnitude larger than the other firms. Since the smallest firms in
Compustat are often startups and may have differ from typical small firms across a range of features,
I abstain from directly comparing the largest firms to the smallest firms in the data. Instead, I
generally focus on comparing the top of the size distribution to the rest of the distribution.

Appendix B contains additional stylized facts on the procyclicality of skewness. I show that the
relation between micro skewness and aggregate growth is strongest when micro skewness is measured
across firms and becomes weaker at higher levels of aggregation. A univariate regression of aggregate
growth on skewness measured across firms explains 70% of aggregate fluctuations. If skewness is
measured across 2-digit NAICS industries instead, the R2 declines to 20%. Micro skewness is highly
correlated with contemporaneous aggregate growth and shows no significant lead-lag relationship
beyond the four-quarter horizon. In addition, the procyclicality of skewness is responsible for previous
findings of countercyclical dispersion. Cross-sectional dispersion has been a popular proxy in the
large literature on uncertainty shocks (Bloom (2009), Bloom et al. (2018)). However, dispersion is
acyclical conditional on controlling for skewness. This matches evidence from the household income
literature (Guvenen et al. (2014)) and suggests that skewness instead of dispersion is the relevant
moment of the cross-section to study. Taken together, these findings motivate the focus on the
comovement of firm-level micro skewness with the business cycle.

3 The importance of micro skewness for macro fluctuations

Does micro skewness matter for the business cycle? One hypothesis is that micro skewness could
matter for aggregate fluctuations if large firms experience bad growth rates. This section presents
evidence supporting this idea. While large firms are commonly found to be less cyclical than small
firms, this difference can be small, see Crouzet & Mehrotra (2020). Table 2 sorts firms by their level
of real sales before a recession and reports the frequency with which these firms end up in the five
quintiles of the cross-sectional growth rate distribution measured at the bottom of a recession.3 Small
firms in Compustat experience a U-shaped probability distribution: They face higher probabilities of
ending up in either tail of the growth rate distribution in a recession than being in the middle of
the distribution. Medium-sized firms in the sample (the middle 80% in terms of real sales) face a
uniform distribution. Large firms’ probability distribution is unimodal: They are more likely to have
a growth rate in the middle of the distribution than in the tails. However, the probability of the
largest firms in Compustat to experience a poor growth rate is still sizeable: 17% of large firms have

3Recessions are defined as significant declines in aggregate sales growth and need not coincide with the NBER
recession dates. The dates of the troughs are 1991Q4, 2001Q4, 2009Q2, 2015Q4, and 2020Q2. I cannot consider the
sales decline in 1984 because there are not enough pre-recession observations to group firms into size bins.
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a growth rate in the bottom 20% of the distribution, compared to 19% for medium-sized firms.4

Importantly, large firms are the only size bin which faces an asymmetry: While the downside

Table 2: Growth rate outcomes by size groups

Size groups
Growth Quintiles Bottom 10% Middle 80% Top 10%

1 0.33 0.19 0.17
2 0.11 0.21 0.24
3 0.08 0.20 0.31
4 0.11 0.21 0.22
5 0.37 0.19 0.06

Bottom 30% Middle 40% Top 30%
1 0.26 0.20 0.16
2 0.15 0.21 0.25
3 0.13 0.20 0.28
4 0.14 0.22 0.24
5 0.32 0.18 0.08

Size groups are defined based on average real sales over the three years
preceding each recession. Recessions are defined as strong declines in
aggregate sales growth, and the sales growth quintiles are measured at
the trough of the sales growth decline.

Table 3: Growth rate outcomes for largest firms
by recession

Growth Quintiles for Top 10%
Recession 1 2 3 4 5

1990 0.12 0.26 0.40 0.18 0.04
2000 0.12 0.20 0.35 0.25 0.07
2008 0.18 0.23 0.27 0.24 0.08
2014 0.24 0.27 0.27 0.20 0.02
2020 0.18 0.21 0.26 0.24 0.12

Growth Quintiles for Top 30%
1 2 3 4 5

1990 0.13 0.26 0.32 0.22 0.07
2000 0.12 0.24 0.28 0.27 0.09
2008 0.17 0.26 0.25 0.23 0.09
2014 0.21 0.26 0.28 0.21 0.05
2020 0.16 0.21 0.27 0.25 0.11

Size groups are defined based on average real sales over
the three years preceding each recession. The largest
firms are defined as either the top 10% of firms (top
panel) or the top 30% (bottom panel). Recessions are
defined as strong declines in aggregate sales growth, and
the sales growth quintiles are measured at the trough
of the sales growth decline.

4Even though the data may understate the exit probability for small firms, it is still striking that small firms are
less likely to remain in the middle of the growth rate distribution than at the top end or the bottom. A representative
sample of firm exit would increase the presence of firms in the bottom quintile of the distribution and decrease transition
probabilities to other bins equally, therefore not changing the relative probabilities of average versus good performance.
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risk for large firms is comparable to that of smaller firms, they face virtually no upside. Only 6%
of large firms have growth rates in the top 20% of the growth rate distribution. This pattern is
robust to extending the definition of large firms to the largest 30% of firms, although the asymmetry
weakens. Table 3 confirms that large firms face this asymmetry in every recession in the sample.

The asymmetry in growth rate outcomes for large firms does not occur outside of recessions.

Figure 2: Share of real sales by growth rate quintiles

The share of real sales accounted for by the different quintiles of the cross-sectional growth rate
distribution resembles a bell curve before recessions, as shown in Figure 2. At the trough of a
recession, the share of real sales accounted for by firms in the bottom quintile of the growth rate
distribution nearly quadruples relative to the peak, and the share of the top quintile halves. In other
words, the representation of large firms increases in the bottom quintile and decreases in the top
quintile when the economy is in a recession instead of in a boom.

The reallocation of firms across growth rate quintiles does not occur for many other firm
characteristics. Figure 3 repeats the same exercise for firm age. Firm age in each growth rate bin
does not change materially between a boom to a bust. In unreported robustness checks, I confirm
that other characteristics including leverage, liquidity, Tobin’s Q, dividend payer status, long-term
debt, and book-to-market ratio also show no clear pattern.

The poor growth rate outcomes of large firms in recessions mean that those firms with the poorest
growth rate realizations account for the majority of the decline in the level of sales in a downturn.
Figure 4 demonstrates this result. This is not obvious: If large firms clustered in the middle of the
sales growth distribution and the bottom quintile was only populated by the smallest firms, the sales
decline could mostly be explained by the middle quintile of the growth rate distribution. The fact
that sales levels decline most strongly due to the performance of the firms with the worst growth
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Figure 3: Share of firm age by growth rate quintiles

rates reflects that some large firms are subject to sizeable downside risks in recessions.
These facts may be surprising: Large firms are generally perceived as less volatile than small

Figure 4: Change in sales levels by growth quintiles

firms but appear to not face significantly lower downside risk. In this context, the distinction between
volatility and skewness is simple yet crucial: Volatility is symmetric and can be large due to large
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positive or negative movements. The larger volatility of small firms is not explained solely by stronger
downside risks for small firms but instead represents both higher upside and downside risks. To see
this point more clearly, I compute the average skewness in the time series of firm growth rates within
different size bins. Define this average as:

ksk (J) = 1
nJ

∑
i∈J

ksk (Gi) with Gi := {gi,t}t=1,...Ti for J = {top,bottom,middle}

Analogously, we can define the average dispersion, disp (J) using the dispersion measure QGi0.9 −Q
Gi
0.1.

Table 4 reports average skewness (in index points) and average dispersion (in percent) for different
size bins. Since there is no obvious way to define the size groups for the time series of growth rates, I
use two different approaches and show that the results are stable across them. The top panel groups
firms into size bins based on the firms’ real sales observed when entering the sample such that a firm
is considered large if it was in the top x% of the real sales distribution in its first quarter of existence.
This especially captures firms that are large throughout the sample but neglects those firms that
became large over the sample period. The bottom panel groups firms into the respective size group
if they are within that group for at least 80% of their quarters. Across both panels, small firms are
significantly more volatile than the largest firms (ca. 60% vs 30% dispersion). However, average
skewness in the time series of large firms is similar or even slightly more negative.

This pattern can inform the debate on the importance of large firms for aggregate fluctuations.

Table 4: Time series skewness and dispersion for large vs small firms

Top 10% Bottom 90% Top 30% Bottom 70% Middle 80%
Measured at start of sample

Skew -0.06 0.05 -0.02 0.06 0.04
Dispersion 33 60 36 64 54

Within category 80% of time
Skew 0.00 0.05 0.03 0.05 0.05
Dispersion 29 60 35 64 54

Skewness is in index points, dispersion is in percent.

Crouzet & Mehrotra (2020) find that large firms are less volatile than small firms but that the
differences in volatility are small while differences in size are large. Aggregate fluctuations are
therefore almost entirely explained by the largest firms. My finding is complementary: The time
series of small firms is more volatile but not more skewed. The larger volatility of small firms is
therefore not due to a stronger downward movement in recessions that is common across small firms.
Instead, the higher volatility of small firms’ growth rates may be largely driven by idiosyncratic
components that is unrelated to the business cycle. These fluctuations average out across these firms,
making the average growth rate across small firms less correlated with aggregate growth.

The previous findings raise the question if there can be a more effective business cycle statistic
than skewness across the growth rates of all firms. Table 5 regresses aggregate sales growth on cross-
sectional skewness computed only within certain size bins. Skewness across growth rate outcomes for
the smallest 10 or even 30% of firms has no significant association with aggregate growth conditional

13



on skewness in the other size bins. Skewness across growth rates of the largest 30% of firms is most
strongly associated with the business cycle. Skewness for the largest 30% of firms explains 70% of the
variation in aggregate sales growth, and skewness in the other size bins adds little explanatory power.

In summary, the largest firms in the Compustat data face similar downside risk to other firms

Table 5: Regressing aggregate activity on skewness by size groups

10-80-10 30-40-30 Top 10% Top 30%
Size Group Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E.

Low 0.05 0.05 0.11 0.07
Middle 0.47 0.10 0.31 0.10
High 0.43 0.09 0.51 0.09 0.80 0.10 0.84 0.10
R2 0.73 0.74 0.64 0.70

Size groups are defined based on average real sales over the previous three years. 10-80-10
separates the sample into the bottom 10%, middle 80%, and top 10% of firms by size, and
computes skewness within each size group. 30-40-30 groups firms into bottom 30%, middle
40%, and top 30%. All variables are standardized. All regressions include a constant.
Standard errors are Newey-West. R2 is adjusted for the number of predictors.

during recessions but have significantly less upside potential. This asymmetry implies that sales
concentrate more at the bottom end of the growth rate distribution in downturns. The decline in sales
levels during downturns is therefore heavily driven by those firms with the worst growth rates. In
general, the growth rates of large firms are less volatile than those of smaller firms but not less skewed.
The performance of large firms may therefore be most informative about aggregate fluctuations. In
fact, skewness across large firms is more closely associated with aggregate fluctuations than skewness
among smaller firms. Skewness across firm outcomes therefore matters for aggregate fluctuations
because some large firms are among the worst growth rate performers. The next section studies if
those large firms may be performing poorly because they respond strongly to aggregate shocks.

4 The response of micro skewness to aggregate shocks

There are different reasons for why skewness in the cross section may arise. Firms could face
skewed idiosyncratic shocks: yi = βε + εi, where ε is an aggregate component, and εi is an
idiosyncratic component with a skewed distribution {εi}i=1,...,N , as considered in Salgado et al. (2023).
Alternatively, firms could have heterogeneous responses to an aggregate shock: yi = βi ∗ ε+ εi.5 This
second case is motivated by a growing literature documenting heterogeneous responses of firms to,
for example, monetary policy shocks (see Ottonello & Winberry (2020) or Cloyne et al. (2023)).

The goal of this section is to quantify the importance of these two explanations for the procyclicality
of micro skewness. The results can be summarized as follows. Variation in micro skewness can
largely be accounted for by a common factor, even though this factor does not explain most of
the variation in firm-level sales growth rates themselves. A wide range of aggregate shocks cause
significant movements in micro skewness and aggregate sales growth and induce a close correlation
between the two. Firms’ heterogeneous responses to aggregate shocks appear to be an important

5A special case of this version is proposed by Ilut et al. (2018), who suggest firms face nonlinear but identical
decision rules of the form yi = f (βε+ εi), where f (·) is concave.
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driver of micro skewness, which I confirm with a variance decomposition of the skewness index that
compares the contributions of aggregate versus idiosyncratic shocks, and with responses of skewness
and aggregate sales growth constructed bottom-up from firm-level IRFs. The response of large firms
to aggregate shocks is also skewed and large firms account for almost all of the sales growth response
following aggregate shocks. This suggests the responsiveness of some large firms plays an important
role in the effect of aggregate shocks on macroeconomic outcomes. It is less clear why some large firms
are so responsive, but the role of profitability may be a good starting point for further exploration.

4.1 A skewness decomposition into common vs idiosyncratic factors

I start by studying the importance of skewness in idiosyncratic components. The evidence from the
previous literature is mixed: Ilut et al. (2018) find no significant skewness in establishment-level TFP
shocks, while Salgado et al. (2023) argue for strong procyclical skewness in TFP shocks computed
using various methods. Both approaches suffer from a related criticism: Even if TFP shocks are not
skewed, there may be other idiosyncratic shocks with a skewed distribution that drive skewness in
sales growth rates; even if TFP shocks are skewed, their contribution to sales growth rates may be
minute because the shocks are small.6 Focusing on skewness in a particular idiosyncratic shock will
therefore not provide conclusive evidence about whether skewed idiosyncratic shocks cause micro
skewness unless the shock is found to be both skewed and explain a significant share of variation in
sales growth rates.

Instead, my approach is more general: It starts from a generic decomposition of observed sales
growth rates into aggregate and idiosyncratic components. I use principal component analysis to
capture (possibly heterogeneous) responses of sales growth rates to aggregate factors and interpret
the residual as capturing any idiosyncratic variation: gi,t = γi + ai,t + εi,t with ai,t := λiFt.7 The
two components can then be used to study their impact on cross-sectional skewness. The results
obtained this way are conservative in the sense that the idiosyncratic component may still contain
aggregate fluctuations that firms could respond to in a nonlinear or heterogeneous fashion. However,
the idiosyncratic component is certain to capture all firm-specific sources of variation.8 If skewness
in idiosyncratic shocks affects skewness in sales growth rates, the idiosyncratic component must
explain a significant share of the skewness in growth rates. Any estimates from this approach for
the importance of skewness in the idiosyncratic component in explaining skewness in growth rates
therefore provide an upper bound.

Table 6 shows the results. Skewness in the aggregate components (across ai,t) correlates closely
with skewness in growth rates once sufficient aggregate factors are included in the decomposition,
while the comovement between skewness in the idiosyncratic components and in the growth rates
decreases strongly with the number of factors (rows 1 and 2).

6Panel regressions in Salgado et al. (2023) confirm this intuition. The skewness in TFP shocks explains virtually
none of the variation in firm-level sales, employment, or investment growth as observed from the R2 values of zero
reported in Table 2 of their paper.

7The same approach is used in Herskovic et al. (2016) to extract the idiosyncratic component of sales growth rates.
8This is true except under a network perspective in which idiosyncratic shocks may cause comovement across firms

that is perceived as aggregate fluctuations by the PCA algorithm. See Foerster et al. (2011) for a discussion of this
point.
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Table 6: Common vs Idiosyncratic Drivers of Skewness

No. Factors: 1 4 8
Correlations with skewness:
ρ (kskε, kskg) 0.66 0.36 0.33
ρ (kska, kskg) 0.65 0.81 0.83
Decomposition of variation in skewness:
R2
ε 0.18 0.15 0.21

R2
a 0.82 0.85 0.79

Fit of aggregate component:
R2
i q(0.25) 0.02 0.11 0.22

R2
i q(0.5) 0.08 0.22 0.34

R2
i q(0.75) 0.18 0.37 0.49

Observations 101,794
Each column refers to a decomposition using a different number of principal

components. The decomposition using the weighted PCA algorithm of
Delchambre (2015) with zero weights for missing values and unit weights for
all other observations. The first two rows measure the correlation of 90%
Kelley skewness in sales growth rates with the skewness in the idiosyncratic
components (kskε) or the aggregate components (kska). The following two
rows decompose the variation in Kelley skewness into the contributions by
skewness in the idiosyncratic part and skewness in the aggregate part. The
last three rows show the 25, 50, and 75% quantile of the distribution across
R2 from firm-level time series regressions of the sales growth rate onto the
aggregate component. The number of observations refers to the hypothetical
balanced panel, of which 5.6% are missing.

Figure 5: Skewness in common vs idiosyncratic component

Correlations can be deceiving because comovement patterns may be strong while magnitudes of
variation differ. To analyze which component explains most of the variation in Kelley skewness, I
decompose the numerator of the skewness measure. The numerator is the component representing
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asymmetries in the distribution, while the denominator is solely a scaling factor ensuring Kelley
skewness always lies between -1 and 1. Let the numerator of the Kelley skewness expression be
η (x) = Qx0.9−2Qx0.5+Qx0.1, where Qxτ indicates the τ -quantile of x := {xi}i=1,...,N . The decomposition
is then

η (gt)
Qgt0.9 −Q

gt
0.1

= η (γ)
Qgt0.9 −Q

gt
0.1

+ η (at)
Qgt0.9 −Q

gt
0.1

+ η (εt)
Qgt0.9 −Q

gt
0.1

+ ∆γ + ∆at + ∆εt , (3)

where γ, at and εt refer to the distributions of the constant, the aggregate and the idiosyncratic
component. Because the ordering of firms within these three distributions may change relative to
the ordering of sales growth rates, the decomposition is not exact. The difference is captured by
approximation errors

∆a =
(
Qãt0.9 −Q

at
0.9 + 2

(
Qãt0.5 −Q

at
0.5

)
+Qãt0.1 −Q

ãt
0.1

)
/(Qgt0.9 −Q

gt
0.1) (4)

with Qãtτ denoting the aggregate component of the τ -quantile of the growth rate distribution gt, and
by ∆γ and ∆ε, which are defined analogously to ∆a. Given these objects, we can compute partial
contributions to explained variance in growth rate skewness. Of the skewness that is unexplained
by the constant or the approximation error, the idiosyncratic component explains only 20%. The
remaining 80% of unexplained variation are attributed to skewness in the common factors.9 This
decomposition result is stable across the number of aggregate factors used and even holds for the case
of only one aggregate factor. To stress the importance of aggregate factors in driving micro skewness,
Figure 5 shows that skewness in the idiosyncratic component adds little information beyond the
procyclical pattern present in skewness of the common component.

The weak contribution of the idiosyncratic component is not due to a small size of that component.
For most firms, the idiosyncratic component remains large after removing the aggregate factors. The
last three rows of Table 6 show the 25,50, and 75% quantile of the distribution of R2 values from
firm-level time series regressions of the de-meaned sales growth rate onto the aggregate factors. Even
when including eight factors, the aggregate component explains no more than 35% of time series
variation for half the firms, and only explains more than 49% of variation for only 25% of firms. To
emphasize: One aggregate factor explains 80% of the variation in micro skewness even though it only
explains 10% of firm-level sales growth variation on average.

4.2 Growth-skewness comovement due to aggregate shocks

Can aggregate shocks explain the comovement of micro skewness and aggregate sales growth? This
section estimates impulse responses of skewness and growth to monetary, oil, credit, uncertainty,
sentiment, and TFP shocks. These shocks are different in nature and timing, constructed using
varying identification schemes and sample periods. I find that all shocks induce a close comovement
pattern between skewness and growth that is at least as strong as measured in the raw data.

9Because the skewness of the different components is not orthogonal, the explained variance attributed to each
component depends on the ordering of the variables. The results presented here order the idiosyncratic component first
to give conservative results for the aggregate component. Ordering the aggregate component before the idiosyncratic
component yields 83% of explained variation for the aggregate component and 17% for the idiosyncratic component in
the model with 8 factors.
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I estimate the impulse responses of skewness and sales growth using local projections (Jordà
(2005)):

yt+h = αh + βhshockt +
L∑
`=1

γ′`,tcontrolst−` + et+h (5)

for h = 0, ...H. The coefficients βh are the impulse response of interest. The variable y is either
micro skewness or aggregate sales growth. The shock series and controls are taken off-the-shelf from
existing work. I now describe each shock in turn. Table 7 summarizes the regression specifications
across the different shocks. Appendix C covers robustness checks and contains details on the variable
definitions as well as data sources.

Monetary shock. I use the Bu et al. (2021) shocks, which are constructed to bridge periods

Table 7: Local projection specifications

Shock Reference Controls (lagged) Sample period
Monetary Bu et al. (2021) Real GDP, GDP deflator,

Shadow Rate, EBP 1994Q1 – 2019Q4
Oil Baumeister & Hamilton (2019) Real GDP, GDP deflator, Oil price 1983Q3 – 2019Q4
Credit Gilchrist & Zakraǰsek (2012) Real GDP, GDP deflator, EBP 1983Q3 – 2019Q4
Uncertainty Ludvigson et al. (2021) Real GDP, GDP deflator, VXO 1983Q1 – 2015Q4
Sentiment Lagerborg et al. (2023) ICE, real GDP, uncertainty,

Real stock prices 1983Q3 – 2019Q4
TFP Ben Zeev & Khan (2015) Real GDP per capita, real stock prices

per capita, labor productivity 1983Q3 – 2012Q1
All specifications include lags of the dependent variable and the shock series as controls and are estimated with two lags. ’ICE’

is the University of Michigan Index of Consumer Expectations. Uncertainty is measured as the 12-month Jurado et al. (2015)
uncertainty index.

of conventional and unconventional monetary policy. This is useful because the skewness series
only starts in the mid-1980s while unconventional monetary policy became an important policy
tool from 2008 onwards. Being restricted to a 1985-2008 sample period would make identification
difficult, especially with quarterly data.10 The shock is estimated with Fama-MacBeth regressions
using changes in interest rates at different maturities around FOMC announcements such that the
second-stage coefficient estimates are the monetary shock series. In my local projection specification,
I include lags of real GDP and the GDP deflator (both as detrended log levels) as well as the Wu
& Xia (2016) shadow rate and the excess bond premium as controls. The EBP captures financial
conditions and is a useful control for the predictable component of the business cycle. I also include
lags of the dependent variable and the shock as controls.

Oil supply shock. The oil supply shocks is identified following Baumeister & Hamilton (2019),
who use carefully selected priors for demand and supply elasticities in the oil market (among priors
for other coefficients) in a Bayesian VAR. Their identification scheme allows them to relax some
identifying assumptions previously imposed in the literature, for example that the oil supply does

10Aggregating high-frequency shocks such as from Gertler & Karadi (2015) to the quarterly frequency has yielded
insignificant effects of monetary policy on GDP. Using Romer & Romer (2004) shocks at the quarterly frequency also
gives insignificant results for growth. This partly reflects that the strength of the effect of the Romer shocks depends
on the inflation episode of the 1970s and early 1980s, see the discussion in Coibion (2012).
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not respond on impact to shocks to the oil price. Under the new identification strategy, the authors
find oil supply shocks to be a more important determinant of historical oil price movements than
found in the previous literature. The shock series I use is the median of the posterior distribution. I
add lags of the shock, GDP, the GDP deflator, the crude petroleum producer price index, and the
dependent variable as controls.

Credit shock. The credit shock uses innovations in the excess bond premium following Gilchrist &
Zakraǰsek (2012). The excess bond premium is constructed from corporate bond spreads to proxy
investor risk appetite and is orthogonal to the risk of corporate default. Gilchrist & Zakraǰsek
(2012) use a recursive identification strategy in a VAR to study the effect of EBP innovations on
macroeconomic variables. They assume that indicators of economic activity do not respond to EBP
shocks within the same quarter while financial variables can respond immediately. Following the
equivalence result of Plagborg-Møller & Wolf (2021), I replicate this identification strategy within my
local projections by controlling for contemporaneous and lagged values of real GDP and the GDP
deflator while only controlling for lagged values of the 10-year US Treasury yield, the federal funds
rate, and real stock prices.

Uncertainty shock. The identification of the uncertainty shock follows Ludvigson et al. (2021),
who use restrictions on the time series of the structural shocks to jointly identify financial uncertainty,
macroeconomic uncertainty, and output shocks. Given the VAR residuals, the authors randomly
draw many candidates for the time series of the structural shocks and only retain those that satisfy
restrictions motivated from economic theory and narratives of historical events. For example,
financial uncertainty should be high in October 1987 (’Black Monday’) and September 2008 (Lehman
collapse).11 The remaining shocks series can be used for set identification of the impulse responses.
The authors find that financial uncertainty shocks are a source of business cycle fluctuations, while
macroeconomic uncertainty is more likely to be an endogenous response to output shocks. To obtain
a single shock series for the financial uncertainty shock, I use the ’maxG’ solution, which jointly
maximizes the inequalities associated with a subset of the constraints. The controls are lags of the
shock, GDP, the GDP deflator, and the dependent variable.

Sentiment shock. While the previous shocks are related to economic fundamentals or financial
conditions, business cycles may also be affected by fluctuations in consumer sentiment that are
unrelated to economic conditions. Lagerborg et al. (2023) show that exogenous changes in consumer
confidence can be recessionary. Their identification strategy relies on mass shootings in the United
States, which are widely reported in the media and are shown to be predictors of downturns in
sentiment. The authors show that the number of fatalities in mass shooting events can be viewed
as exogenous to the state of the economy and used as a valid instrument to identify the effect of
consumer confidence shocks on the business cycle. The authors estimate impulse responses in a proxy
SVAR, and I extract the shock series from this system using the authors’ replication codes. Similar
to Lagerborg et al. (2023), I include lags of the shock, the University of Michigan Index of Consumer
Expectations, real GDP, the Jurado et al. (2015) 12-month macroeconomic uncertainty index, real

11The idea behind the identification scheme is similar to the classic sign restrictions, except that the restrictions
are directly imposed on the time series of the structural shocks as opposed to the shape or magnitude of the impulse
response estimates.
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stock prices, and the dependent variable in the local projections.
TFP news shock. News about future productivity can explain a significant share of business

cycle variation, as shown in Beaudry & Portier (2006). I use shocks following the identification
strategy of Ben Zeev & Khan (2015), who impose medium-run restrictions to identify news about
investment-specific technology. Their shock is chosen to maximize the explained variance in (the
inverse of) the relative price of investment in the medium term, while being orthogonal to both
current TFP and the current relative price of investment. The authors find TFP news to account for
a significant share of business cycle fluctuations. The impulse responses are estimated similar to the
local projections of Ramey (2016), controlling for lags of the shock, real GDP per capita, real stock
prices per capita, labor productivity, and the dependent variable.

Figure 6 shows the impulse response estimates for the six different shocks. All aggregate shocks

Figure 6: Comovement of growth and skew after aggregate shocks

Note: The 90% confidence bands are based on Newey-West standard errors. Shock magnitudes
are normalized to be one standard deviation. The signs of the sentiment and the TFP shock
are reversed to be contractionary.

are associated with a subsequent decline in micro skewness (blue lines; left axis). Following a one
standard deviation shock, the skewness index declines by between 0.02 and 0.06 points. The decline
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is strongest for the credit shock and weakest for the monetary shock. The peak effects occur 4 to 6
quarters after impact and is statistically significant across all shocks. The effects on skewness are
not long-lived and die out after at most 10 quarters. The response of aggregate sales growth (black
dashed lines; right axis) to the aggregate shocks looks very similar to the responses of skewness. The
correlations of the impulse responses for a given shock range between 0.89 and 0.98. Aggregate shocks
therefore appear capable of 1) inducing significant movements in micro skewness and 2) generating
strong comovement between sales growth and skewness.

These findings confirm the priors one may have formed from considering Figure 1. Micro skewness
moves closely with aggregate growth across many US recessions (including the Covid recession),
suggesting the high correlation is a robust business cycle fact that does not only pertain to certain
types of recessions. It is therefore encouraging to see that different types of shocks, all of which are
considered potentially important drivers of the US business cycle, induce the procyclical skewness
pattern.

4.3 Growth-skewness comovement due to idiosyncratic shocks

To compare the importance of aggregate shocks for procyclical skewness to the role of idiosyncratic
shocks, I construct a new shock series reflecting the occurrence of size-weighted firm-level idiosyncratic
shocks.12 The shock series is constructed as follows:

1. Get the residuals εi,t from the principal component regressions gi,t = γi + λiFt + εi,t discussed
above. The residuals are orthogonal to any aggregate factors.

2. Regress the residual on lagged year-over-year sales growth and quarter-over-quarter stock
returns. This is to remove any easily predictable components from the residuals. Call the
residuals from these regressions ε̃i,t.

3. Run univariate regressions of the residuals ε̃i,t on I/B/E/S forecast errors ei,t and keep the
fitted values from these regressions: ε̂i,t = α̂i + β̂iei,t, where α̂i and β̂i are OLS coefficient
estimates. The fitted values represent the part of the idiosyncratic residuals that was not
forecasted by market analysts. I/B/E/S collects analyst forecasts for balance sheet items of
publicly listed companies. For example, the data set may contain the forecast of a JP Morgan
analyst for Apple’s sales in the coming quarter.13 I focus on quarterly sales forecasts made
before the start of the quarter but at most 150 days in advance. The forecast error is the log
difference between a given analyst forecast and the realized value. If there are multiple forecasts
for a given company and quarter, I only keep the forecast with the smallest absolute error.
This gives the most conservative estimate for the extent to which εi,t was surprising to analysts.
This step yields forecast errors and hence shocks ε̂i,t for around 1000 firms per quarter. The
skewness in the time series of forecast errors is closely correlated with the skewness in sales
growth rates, as shown in Figure 24 in Appendix C.

12The idea that idiosyncratic shocks can have aggregate implications has been revived by Gabaix (2011). Gabaix &
Koijen (Forthcoming) provide the methodology to aggregate idiosyncratic shocks to study their macro implications.

13Van Binsbergen et al. (2023) document that analyst forecasts contain important information that is not captured
by publicly available information and useful for forecasting firm fundamentals.
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4. Aggregate the individual shock series using real sales weights. Call the resulting shock series ξt.

5. Orthogonalize the shock series with respect to the macro shocks. To be conservative, I only
consider the monetary shock, the oil supply shock, and the sentiment shock as aggregate shocks
in this step. Given the nature and identification schemes of the shocks these three shocks can
most clearly be considered pure aggregate shocks. In contrast, the credit shock may be driven
by contributions of a small set of firms to the EBP, for example. The shock series ξt remains
virtually unchanged in this step since it is barely correlated with any of the other shock series.

6. To ensure that the shock series cannot be forecasted using standard macroeconomic data, I
regress ξt on eight factors from the FRED-QD data set by McCracken & Ng (2020). This data
set contains over 200 economic time series providing a comprehensive picture of macroeconomic
conditions. The residuals from this regression are the idiosyncratic shock series to be used in
the local projections.

Figure 7: Results for idiosyncratic shock series

The left panel of Figure 7 shows the shock series. The shock series starts in 1994 due to the shorter
sample for the I/B/E/S forecast errors. By construction, the shock series cannot be forecasted well by
a broad set of macroeconomic variables. Table 22 in Appendix C reports the results from a regression
of the shock series onto 11 macroeconomic variables used in the local projections and reports an
adjusted R2 of only 11%. The right panel of Figure 7 shows the impulse response of micro skewness
(solid blue) and aggregate sales growth (dashed black) to a one standard deviation contractionary
idiosyncratic shock. Skewness declines on impact in line with the decline in aggregate sales growth
before recovering quickly after around six quarters. The order of magnitude of the impulse response
estimates is in line with the responses to one standard deviation aggregate shocks.14

14An important step in constructing the shock series is removing the component that is predictable by FRED
factors. If the predictable component is not removed, the shock series shows strong local minima around the burst of
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The idiosyncratic shock series does not capture the effects of a particular source of idiosyncratic
fluctuations but is instead a catch-all for any type of idiosyncratic shock such as product releases,
strikes, natural disasters, or changes to the executive board. This allows to obtain a relevant shock
series in the statistical sense. In contrast, many idiosyncratic shock series may be well identified but
are too small to cause significant fluctuations at the macro level. I consider my approach conservative
in that it starts the shock construction from firm-level sales growth rates and only removes those
sources of variation that are either attributable to aggregate sources or forecastable. Given the new
shock series, we can assess its contribution to the fluctuations in skewness relative to the contribution
of aggregate shocks.

4.4 A variance decomposition of skewness fluctuations

What is the contribution of aggregate versus idiosyncratic shocks to the fluctuations in micro skewness?
I estimate a variance decomposition for the skewness index using the approach of Gorodnichenko
& Lee (2020). Their methodology proceeds in two steps. First, regress the target variable on all
controls but not the current shock:

yt+h = αh +
L∑
`=1

γ′`,tcontrolst−` + et+h (6)

Then, for horizon h, the explained variance is the R2 from the regression of the first-step residuals
on the vector of shocks between t and t+ h:

ût+h =
h∑
k=0

b′k,hshockst+k + vt+h (7)

The result of this approach is the variance of the forecast error explained by the set of shocks
considered. I compare the contributions of the monetary, oil supply, and sentiment shock against
the contribution of the idiosyncratic shock series. I focus on these three aggregate shocks because
they are most clearly interpretable and identified as aggregate shocks as opposed to possibly having
granular origins. The first-stage regression controls for two lags of the shocks and of GDP growth, the
EBP, and the skewness index. As recommended in Gorodnichenko & Lee (2020), I use a VAR-based
bootstrap to address small-sample bias in the R2 estimates.

Because the four shock series are not orthogonal, the variance explained by the shocks does not
equal the sum of the variances explained by each individual shock. To achieve a decomposition, I
approximate each shock z’s partial contribution by subtracting the R2 from equation 7 using the
three other shocks from the explained variance using all four shocks: partialz = R2

Z −R2
Z\z, where

Z := {monetary, oil, sentiment, idiosyncratic} is the set of all shocks. Shock z’s contribution to the
explained variance is then contributionz = ωzR

2
Z with weights ωz = partialz/

(∑
i∈Z partiali

)
.15

Figure 8 plots the variance decomposition up to horizon ten of the skewness index. Within the
the dot-com bubble and during the Great Financial Crisis. Accordingly, the IRF estimates indicate a decline in the
skewness index and aggregate sales growth that are twice as large as the baseline results. These results are available
upon request.

15This is a one-step approximation to the type of relative importance calculation described in Grömping (2007).
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Figure 8: Variance decomposition of micro skewness

regression, up to 60% of the variation in forecast errors is explained by the four shocks. Explained
variance is lower at short horizons but stable beyond the fourth quarter. Of the variance explained,
the aggregate shocks account for roughly 75% compared to 25% for the idiosyncratic shock. The
aggregate shocks themselves account for roughly 25% of variation each, with some variation over time.
These results are in line with the PCA decomposition result from Section 4.1: Most of the variation
in the skewness index is due to aggregate shocks, though a non-negligible share of the variation is
accounted for by idiosyncratic shocks. These results confirm the importance of idiosyncratic shocks
in aggregate fluctuations (Gabaix (2011), Carvalho & Grassi (2019)) while supporting this paper’s
focus on aggregate shocks.

4.5 Skewness across firm-level impulse responses

So far, this paper has used measures of aggregate growth and micro skewness as inputs to the local
projections to study their impulse responses. Instead, this section estimates impulse responses of
firm-level sales growth rates to aggregate shocks and then construct the response of micro skewness
and aggregate sales growth bottom-up from the distribution of firm-level IRFs. All firm-level regres-
sions control for lagged values of the shock and lagged GDP, as well as sales growth at the firm and
the 2-digit NAICS level. In addition, I include shock-specific controls: shadow rate and leverage
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(monetary shock), GDP deflator (oil supply), excess bond premium (credit shock), Jurado et al.
(2015) financial uncertainty (uncertainty), ICE consumer sentiment, macroeconomic uncertainty,
and S&P500 stock prices (sentiment), and GDP per capita, labor productivity, and S&P500 stock
prices per capita (TFP news). All controls are included with two lags. The only exception is a
contemporaneous control for GDP growth in the credit shock regression, mirroring the specification
in Gilchrist & Zakraǰsek (2012).

The summary statistics for the distribution of firm-level impulse response estimates are reported

Table 8: Firm-level local projections - Summary statistics

Monetary Oil Credit Uncertainty Sentiment TFP News
# Streaks 4,120 5,332 2,813 5,115 5,296 4,829
# Firms 4,017 5,061 2,813 4,893 5,030 4,651
Avg. # Obs. 64 70 84 66 69 63
Avg. R2 0.33 0.23 0.25 0.26 0.32 0.32
Sign. IRFs (%) 77 76 83 78 81 79
QIRF

0.1 (%) -5.4 -13.9 -2.1 -5.0 -4.5 -5.2
QIRF

0.5 (%) -0.16 -0.02 -0.33 -0.3 -0.29 -0.35
QIRF

0.9 (%) 5.0 13.1 1.2 4.0 4.1 4.7
The number of streaks can be larger than the number of unique firms. The average number of time

series observations is measured for impact effect regressions and rounded to the nearest integer. The
adjusted R-squared values are averaged across horizons and firms. The share of significant IRFs is the
relative frequency of statistically significant IRFs for the peak of the impulse response estimates, measured
using 90% confidence intervals based on Newey-West standard errors. Quantiles across firm-level IRFs are
averaged across horizons. IRFs for the credit shock are only estimated for firms existing during the Great
Financial Crisis.

in Table 8. Varying sample periods across the shocks and missing values for firm-specific controls
(in particular leverage for the monetary shock) imply differences in sample sizes. The number of
unique streaks is above 4,000 for all shocks except credit. The sample for the credit shock is smaller
since I only consider streaks covering the Great Financial Crisis, which turns out to be crucial to
identify the effects of credit shocks using the Gilchrist & Zakraǰsek (2012) specification. The number
of streaks can be larger than the number of unique firms in the sample since some firms can have
multiple streaks in the data, although this does not happen frequently. The average time series
is roughly 70 quarters long. The firm-level regression have average R2 values of at least 23% and
over 75% of impulse response estimates have statistically significant peak effects for each shock.
The distribution of IRF estimates is widely dispersed with negative (unweighted) mean estimates,
reflecting the contractionary nature of the shocks but large heterogeneity in terms of firm responses.
These distributions look very similar when only considering IRFs with significant peak effects (results
not shown).

To build some intuition for the impulse response estimates, Figures 25 - 30 in Appendix C show
examples of firm-level IRFs for ExxonMobil, McDonald’s, Marriott Hotels, Caterpillar, IBM, and
Walt Disney. The impulse responses vary across firms in line with differences in sector exposure
and cyclicality. For example, Caterpillar is a very cyclical company with strong impulse responses
to aggregate shocks, while Walt Disney’s sales are unresponsive to aggregate shocks. ExxonMobil
responds strongly to oil supply shocks, while IBM is adversely affected by TFP shocks and Marriott
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by uncertainty shocks. As an additional sensitivity check, Figure 31 uses the oil supply shock to
compare the impulse responses of four big oil corporations against non-oil firms. Oil corporations have
considerably stronger responses to the oil shock. Taken together, the firm-level impulse responses
appear to provide a reasonable picture about firm’s responsiveness to aggregate shocks.

Based on the firm-level IRF estimates, I construct the response of skewness and aggregate sales

Figure 9: Comovement of bottom-up growth and skew after aggregate shocks

growth from the bottom up. The aggregate sales growth IRF is the size-weighted average of the
firm IRFs, while the response of micro skewness is estimated from the cross section of firm IRFs.
Testing for procyclical skewness in this exercise is significantly harder since individual firm IRFs are
much more volatile than aggregate sales and the only source of procyclical skewness in response to
a properly identified aggregate shock are heterogeneous responses across firms. The results are in
Figure 9, where shaded areas are 90% confidence intervals based on a simple bootstrap with 2000
replications. Following a contractionary aggregate shock, micro skewness (solid blue) and aggregate

26



sales growth (dashed black) show a closely correlated decline. This is especially true for the oil,
credit and uncertainty shocks. The correlations of skewness and growth following a sentiment or TFP
shock are also close but the evidence for a negative skewness response is less clear. The monetary
shock leads to a severe contraction in skewness but only after eight quarters, with a positive resonse
on impact. Sales growth declines earlier and is recovering while skewness bottoms out. Without
putting too much weight on any individual impulse response estimate, the sum of findings across
the six different shocks confirms that 1) micro skewness declines following contractionary aggregate
shocks and 2) aggregate sales growth and micro skewness are strongly correlated following aggregate
shocks. Figure 32 in Appendix C confirms that the results are robust to including more lags of the
controls and adding lagged stock returns as controls. Using year-over-year stock returns instead of
sales growth gives qualitatively similar results.

How does the response of large firms differ from the response of small firms? I split the sample

Figure 10: Large vs small firms: Bottom-up skewness and growth responses

Note: The 90% confidence bands are based on Newey-West standard errors. Shock
magnitudes are normalized to be one standard deviation. The signs of the sentiment
and the TFP shock are reversed to be contractionary.

into two size groups (largest firms versus the rest) to study the impulse response of skewness across
large vs small firms and compute their contribution to aggregate sales growth. Figure 10 shows the
IRFs for the largest 10% of firms (defined by average real sales) and the IRFs for the bottom 90%
of firms. By construction, the sum of the two lines equals the impulse response of aggregate sales
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growth shown in Figure 9. The black dotted (dashed) line shows large (small) firms’ contribution to
the impulse response of aggregate sales growth. The red (blue) line shows the impulse response of
skewness across large (small) firms. The shaded areas are 90% confidence intervals.

The bottom-up skewness response of large firms is significantly negative across shocks and in line
with the impulse responses for the skewness index (Figure 6). The response of the largest firms is
more skewed than the response of the rest of the firms. The differences in skewness can be large. For
example, the minimum of the skewness IRF in response to a one standard deviation sentiment shock
is around -0.2 for the largest firms but only -0.04 for the smaller firms. In response to an oil shock,
large firms’ skewness declines by over 0.3 points, while smaller firms’ skewness falls by 0.1 points at
most. The differences are also large for the monetary and the TFP shock and less pronounced for
the credit and the uncertainty shock. In any case, the response across large firms is not less skewed
than the response of small firms.16

Since the firm size distribution is fat-tailed, the size-weighted sales response of large firms is
significantly more contractionary than for small firms. The decline in aggregate sales growth following
an aggregate shock is almost entirely due to the largest firms, confirming the findings of Crouzet &
Mehrotra (2020) on the role of the largest firms for aggregate fluctuations.17 Since the aggregate
growth rate responses in this figure are weighted by firm size, my findings do not suggest that small
firms are less responsive to shocks. Instead, their responses barely affect aggregate fluctuations since
they receive small weights. To the extent that the response of small firms is less skewed than the
response of large firms, small firms may also contribute less to aggregate fluctuations because there is
a non-negligible share of small firms with positive impulse responses to negative shocks. The impulse
responses of small firms may be more volatile than those of large firms, but the contribution of small
firms to aggregate fluctuations can be weak if this volatility averages out across firms.

Figure 11 confirms this intuition by plotting the contribution of different size and growth rate bins
to the aggregate growth response following an aggregate shock. For each shock, I consider the trough
of the aggregate growth rate response and group the IRF estimates at this point into five quintile bins:
from poorest performers (bin 1) to the best performers (bin 5). Weighting the impulse responses by
the firms’ sales weights allows to compute each bin’s contribution to the year-over-year aggregate
sales decline observed at the trough. I re-scale these contributions to sum to -100%. This yields a
bar plot for each shock, which is shown in Figure 36 in Appendix C. Averaging the contribution of
each bar across all six shocks yields Figure 11. Within each IRF bin, the figure also indicates the
part of the contribution that is due to the largest firms (top 10% of the size distribution; blue bars)
and the part due to the rest of firms (orange bars).

Following an aggregate shock, the aggregate sales growth decline is mostly driven by those firms
with the poorest growth rates (lowest IRF values). The top 60% of the IRF distribution together

16One may be concerned about the reliability of IRF estimates for smaller firms since these firms are more volatile.
Figure 35 in Appendix C shows a robustness check addressing these concerns. I separately construct a micro skewness
index for the largest firms and the rest of firms and estimate the response of these two skewness indexes to aggregate
shocks. The skewness index of the largest firms declines substantially, while the skewness index for the rest of firms
shows a much more muted and often insignificant response.

17These findings are robust to comparing the top 10% of firms against the middle 80% or to comparing the top
30% of firms against the bottom 70%, although the differences across size groups are most pronounced in the baseline
results (see Figures 33 and 34 in Appendix C).
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Figure 11: Contributions of growth and size bins to aggregate growth decline

Note: Largest firms are the top 10% of the size distribution, which averages real
sales over time for each firm. The contributions are re-scaled such that the bars
add up to -100% and averaged across the six shocks.

have a weakly positive contribution to aggregate growth, while the bottom 20% account for roughly
half of the aggregate growth response. Within each bin, the largest firms account for the majority of
the response. This is true even among the worst performers: Over 70% of the contribution of the
poor performers is due to firms that are both large and responsive. These large and responsive firms
are important for the transmission of aggregate shocks to the economy even though they are rare.
Only 1.6% of firms in the sample are considered to be both large and responsive, but they account
for one third of the economy’s response to aggregate shocks. Overall, the largest firms account for
78% of the aggregate sales decline, reflecting the fact that they are large and that their responses are
more skewed than for the rest of firms.18

These findings have important implications for the interpretation of the skewness-growth comove-
ment. If only skewness across small firms’ IRFs showed a signficant response to aggregate shocks,
procyclical skewness could be interpreted as a byproduct of the business cycle: Aggregate shocks
drive aggregate fluctuations because they have a negative (but unskewed) impact on large firms on
average. They happen to have a negatively skewed impact on small firms, which does not matter
(much) for aggregate fluctuations. However, the results show that the response of large firms is
skewed. This provides a new narrative for the transmission of aggregate shocks to the economy:
A sizeable share of the effect of an aggregate shock can be traced to a small number of very large
firms with strong responses to the shock. This is a complementary business cycle explanation to
Gabaix (2011)’s granular hypothesis. The granular hypothesis argues that idiosyncratic shocks to
large firms can explain a significant share of business cycle fluctuations. The results of this paper

18These results also hold for each shock individually, see Figure 36 in Appendix C.
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suggest a granular response to aggregate shocks: Aggregate shocks explain a large part of aggregate
fluctuations but a large part of their effect comes from the response of a handful of very large firms.

4.6 The origins of heterogeneous responses

Why are some large firms so vulnerable in response to aggregate shocks? More generally, what
explains the heterogeneous responses of firms to aggregate shocks? This section presents some
tentative results on the most promising firm characteristics that explain my findings. Explaining the
heterogeneity across impulse responses turns out to be challenging and there does not appear to be a
single firm characteristic accounting for most of the variation across firms. However, I present some
evidence that those large firms with weak ex-ante profitability may be more likely to suffer when an
aggregate shock hits.

To make progress, I identify the firm characteristics that best predict heterogeneity in the

Table 9: Predictors of heterogeneous responses among the largest firms

Monetary Oil Credit Uncertainty Sentiment TFP News
Age 0.01 0.62 -0.11 -0.04 -0.10 0.03

(0.22) (0.62) (0.10) (0.16) (0.15) (0.18)
Size -0.69 0.15 0.41 0.44 0.48 0.18

(0.54) (1.35) (0.25) (0.42) (0.38) (0.41)
Leverage 4.69 1.11 0.66 2.55 2.65 -8.03

(6.12) (13.97) (1.81) (6.81) (4.36) (8.74)
Liquidity 1.03 0.97 -0.14 0.22 0.04 1.15

(0.48) (1.23) (0.20) (0.46) (0.53) (0.45)
Dividend payer 0.03 0.98 0.05 0.09 0.15 0.16

(0.17) (0.45) (0.05) (0.13) (0.11) (0.14)
Fixed assets -0.37 -1.09 -0.39 -0.34 -0.38 0.03

(0.24) (0.61) (0.11) (0.22) (0.19) (0.28)
Short-term debt -1.94 1.15 -0.30 -0.81 -1.03 3.55

(2.37) (6.62) (0.74) (2.83) (1.94) (3.45)
Long-term debt -3.62 -1.97 -0.44 -2.26 -4.60 8.02

(5.35) (12.14) (1.62) (8.08) (9.00) (8.52)
Sales / Assets 0.19 1.49 0.17 0.47 0.17 0.20

(0.31) (0.76) (0.17) (0.24) (0.31) (0.26)
Profitability 2.75 4.46 0.66 1.41 1.78 1.94

(0.99) (2.78) (0.46) (1.06) (0.71) (0.76)
R&D -0.26 3.20 0.00 0.37 0.21 -0.10

(0.83) (1.46) (0.40) (0.69) (0.64) (0.62)
Inventory 0.24 -0.18 -0.18 0.32 0.11 0.25

(0.38) (0.90) (0.20) (0.31) (0.38) (0.37)
Observations 412 534 282 512 513 483
adj. R2 0.42 0.32 0.11 0.11 0.14 0.17

Dependent variable: Minimum of IRF across horizons, in percent. Firm characteristics are averaged over
time for each firm, then standardized across firms. Dividend payer is a dummy. All regressions include
a constant and controls for the number of recession quarters, aggregate growth, industry growth (2-digit
NAICS), pre-recession firm growth, and average firm growth. Standard errors are heteroskedasticity robust.

minimum of the impulse response (across IRF horizons). The predictors are a set of common firm
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characteristics, where the time series of each characteristic is averaged for a given firm and then
standardized across firms.19 For each shock, this yields a cross section of IRF minima and firm
characteristics. Table 9 shows the results. Within the set of large firms, characteristics such as age
and firm size are not significant predictors of cross-firm differences in IRFs. The only successful
predictor turns out to be profitability (measured as return on assets), which is significant for most
shocks. For example, a one standard deviation increase in ROA raises the minimum of the impulse
response to a monetary shock by 2.75 percentage points. More profitable firms therefore respond less
negatively to contractionary shocks.20

In general, the broad set of firm characteristics explains only a small share of the variation in
impulse response estimates. To test if the poor fit is due to nonlinearities, I estimate a random forest
(Breiman (2001)) on the data. The random forest is a supervised machine learning algorithm that
naturally handles state dependence in the form of threshold effects. It repeatedly searches for a
value of a characteristic that allows to split the data in a way to make optimal constant predictions
within the created partitions (’leafs’). For example, the algorithm may decide that the best way
to separate firms’ IRFs into two groups is to separate large from small firms. The random forest
therefore allows for state dependence in a naturally interpretable way that closely maps into the
common understanding of state dependence in macroeconomics. In contrast to other nonlinear
machine learning models such as deep neural networks, the random forest has been shown to perform
well for tabular data with a moderate number of observations and is less sensitive to hyperparameter
tuning (Goulet Coulombe et al. (2022)).

The random forest consists of a collection of regression trees. Let xi,j be a characteristic j of firm
i and denote its IRF value as yi. The number of regions is Nm. Each tree splits the sample of firm
characteristics x into non-overlapping regions Rm such that all firms within the same region obtain
the same prediction:

ŷi = f (xi) =
∑
m

cmI{xi∈Rm}, (8)

with constants
cm = 1

Nm

∑
yi:xi∈Rm

yi (9)

and regions defined as rectangular hyperregions in the predictor space

Rm = {xi : kmj,l < xi,j ≤ kmj,h∀xi,j ∈ xi}. (10)

The goal of the algorithm is to find the characteristic-specific borders kmj,l and kmj,h that yield the
best prediction.

Without further restrictions, this tree is able to achieve zero forecast error by splitting the sample
into as many leafs as observations. This would clearly overfit the data. The random forest handles

19The construction of the firm characteristics is described in Appendix C.
20Alternative ways of cutting the data confirm these findings. Among large firms, the probability of firms with high

ROA (top 10% of ROA distribution) to end up in the bottom quintile of the growth rate distribution at the trough of
a recession is 12% compared to 24% for the firms with the lowest ROA (bottom 10%). Similarly, (small and large)
firms with strong responses to aggregate shocks (bottom half of IRF distribution) have significantly lower ROA than
those firms with IRFs in the top half of the distribution. This findings is robust across shocks but weakens when only
considering the very largest firms.
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this problem in two ways. First, certain hyperparameters, such as the number of maximum number of
leafs in a tree or the maximum depth of a tree, allow to avoid overfitting of a given tree and improve
out-of-sample fit. Second, the random forest predictions are averages over an ensemble of regression
trees. Regressions tree predictions differ from each other because each tree is trained on a slightly
different (bootstrapped) sample and because the firm characteristics used to split the sample at a
given node are a random subsample of the full set of characteristics. The number of trees and the
share of characteristics to be considered for each split are additional hyperparameters to be chosen.

The model is trained using a grid search over different hyperparameter choices. The number of
trees (n estimators) is chosen from {50, 100, 150, 200, 300}, the share of characteristics to consider for
a given split (max features) is {0.25, 0.3, 0.4, 0.5}, the maximum depth of a single tree (max depth)
can be {5, 10, 20, 30}, and the maximum number of leaf nodes (max leaf nodes) is {3, 6, 9, 12}. These
hyperparameter ranges are chosen to allow for a good bias-variance tradeoff. To train the model, I
randomly sample 75% of the full sample as a training sample. The remaining 25% of the data are
used as a test sample to evaluate the fit of the model on unseen data. To increase the number of
observations, I focus on all impulse responses as opposed to only those of the largest firms. After
training, the R2 values on the test sample are ranging from 14% to 26%, roughly matching the
in-sample performance of OLS regressions.

In contrast to linear regression settings, random forests are nonparametric and do not provide
easily interpretable regression coefficients that can be used to assess variable contributions to the
prediction. Shapley values (Shapley (1953)) allow to distribute the prediction success to the different
predictors.21 For a given observation yi, the Shapley value measures the average marginal contribution
of a predictor xi,j across all possible coalitions S of predictors:

φ
(i)
j (v) =

∑
S⊆Xi\{xi,j}

|S|! (|Xi|−|S|−1) !
|Xi|!

(v (S ∪ {xi,j})− v (S)) , (11)

where Xi = {xi,1, ..., xi,p} is the set of firm characteristics of firm i, p indexes the last predictor, and
the value function

v (S) =
∫
f (xi,1, ..., xi,p) dPXi 6∈S − EX (f (X)) (12)

computes the difference between the prediction of coalition S and the average predicted value. The
average absolute contribution of a firm characteristic j to explaining heterogeneity in IRFs is then

φj = 1
N

N∑
i=1
|φ(i)
j |. (13)

Larger values indicate a larger contribution to the prediction. Unlike regression coefficients, the
Shapley values do not indicate the sign of the contribution. An exact evaluation of the Shapley
value is computationally intense since the number of coalitions grows exponentially in the number of
predictors. Lundberg & Lee (2017) provide an efficient implementation that reduces the computational
burden significantly. I follow their approach.

Figure 12 shows the characteristics with the largest Shapley values for the different shocks. Size
21Molnar (2020) provides an introduction to the concept for the interpretation of machine learning models.
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Figure 12: Shapley values of different firm characteristics

Note: The variable names are as follows. liq: liquidity. pre rec: pre-recession sales growth. fixedassets:
fixed assets. relsale: sales over assets. REC: recession dummy. naics2 gr: industry sales growth. size: real
sales. rsaleq gr4: firm sales growth. roa: return on assets (profitability). agg gr4: Aggregate sales growth.
age: (log) firm age. invt assets: inventories over assets. rnd: R&D expenses over assets. ltdebt: long-term
debt over assets. See Appendix C for a full list of variable definitions.

is generally among the most important predictors, reflecting that large firms have weaker responses
on average. Apart from average sales growth rates, which are mostly included as a control, the only
other predictor that repeatedly features among the top predictors is the return on assets, a common
measure of firm profitability. This confirms the findings from Table 9 in a state-of-the-art machine
learning regression allowing for flexible forms of nonlinearity.

How should we interpret the role of profitability in moderating the responsiveness of large firms
to aggregate shocks? Higher profitability could reflect structural factors such as higher pricing power.
Firms with high markups may have more space to pass on increases in input costs or could engage
in predatory pricing behaviour to gain market share during downturns. High markups may also
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be a reflection of operating in a market niche with a stable customer base due to specific needs or
preferences. This may reduce the volatility of such firms in general. In contrast, firms with low or
negative profitability may be vulnerable to aggregate shocks because they have limited balance sheet
capacity to deal with financial blows, or low pricing power may mean that these firms are forced
to follow market trends of declining prices in an environment of declining demand. Future work
could explore the relation between profitability (or markups specifically) and firms’ responsiveness to
shocks in more detail, and may also want to identify further characteristics that can account for a
larger share of the heterogeneity in responsiveness across firms.

5 Conclusion

This paper studies the origins and implications of procyclical micro skewness. There are two key
findings. First, micro skewness matters for aggregate fluctuations because some large firms experience
very poor growth rates in recessions. This means that most of the decline in sales levels in a recession
is accounted for by those firms with the poorest growth rate outcomes. Second, aggregate shocks
induce a close comovement between aggregate sales growth and micro skewness because firms respond
heterogeneously to these shocks. Importantly, the response of the very largest public firms in the US
economy is also skewed such that some large firms respond strongly to aggregate shocks. Since the
firm size distribution is fat-tailed, the aggregate effects of aggregate shocks are largely explained by a
small number of very large firms with strong responses. I confirm this finding for six different types
of aggregate shocks, identified with six different identification schemes.

The findings of this paper suggest that the sources of vulnerability of large firms provide a fruitful
area for future work. A natural next step is to identify the firm characteristics that best predict
the responsiveness of large firms. This paper has taken a small step in that direction and proposed
profitability as a potential candidate for future study. In ongoing work, I am taking a more detailed
look at the mechanisms through which profitability may affect firm vulnerabilities.
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Grömping, U. (2007), ‘Estimators of relative importance in linear regression based on variance
decomposition’, The American Statistician 61(2), 139–147.

Guvenen, F., Ozkan, S. & Song, J. (2014), ‘The nature of countercyclical income risk’, Journal of
Political Economy 122(3), 621–660.

Guvenen, F., Pistaferri, L. & Violante, G. L. (2022), ‘Global trends in income inequality and income
dynamics: New insights from grid’, Quantitative Economics 13(4), 1321–1360.

Herskovic, B., Kelly, B., Lustig, H. & Van Nieuwerburgh, S. (2016), ‘The common factor in id-
iosyncratic volatility: Quantitative asset pricing implications’, Journal of Financial Economics
119(2), 249–283.

Higson, C., Holly, S. & Kattuman, P. (2002), ‘The cross-sectional dynamics of the us business cycle:
1950–1999’, Journal of Economic Dynamics and Control 26(9-10), 1539–1555.

Higson, C., Holly, S., Kattuman, P. & Platis, S. (2004), ‘The business cycle, macroeconomic shocks
and the cross-section: the growth of uk quoted companies’, Economica 71(282), 299–318.

Hinkley, D. V. (1975), ‘On power transformations to symmetry’, Biometrika 62(1), 101–111.

Ilut, C., Kehrig, M. & Schneider, M. (2018), ‘Slow to hire, quick to fire: Employment dynamics with
asymmetric responses to news’, Journal of Political Economy 126(5), 2011–2071.

37
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Appendix A Data Preparation

I start from the entire Compustat database at the quarterly frequency. After the download, the
data has 1,928,055 quarter-firm observations and covers the period 1961Q1 - 2022Q3. The date is
defined using the item datacqtr, not the fiscal quarter. The unique firm identifier is gvkey. I drop
firms that are not incorporated (variable fic) or headquartered (loc) in the United States. I remove
any companies with an SIC code above 9000, which includes non-operating establishments. I drop
any observations with negative nominal sales (saleq) and remove all duplicates of the firm-quarter
identifier (gvkey and datacqtr).

Nominal sales are deflated with the GDP price deflator (USAGDPDEFQISMEI on FRED) to
obtain real sales si,t of firm i in quarter t. If a firm shows a missing value of real sales in a period
that is surrounded by non-missing sales observations, I fill the missing value via linear imputation. If
two missing values are adjacent, no imputation is performed. Real sales growth is the year-over-year
growth rate of quarterly real sales: gi,t = si,t−si,t−4

si,t−4
. Analogously, real sales growth rates computed

as log differences are g̃i,t = ln(si,t)− ln(si,t−4). Aggregate real sales growth is

gt =
∑
i si,t−4gi,t∑
i si,t−4

(14)

This way of computing aggregate sales ensures that only growth rates of firms are considered that
experience non-missing sales in both quarters. It is not biased by the entry of new firms or exit of
dying firms. Similarly, I compute growth rates for different industries at the 2,3,4, and 5 digit NAICS
level. An alternative measure of aggregate fluctuations used in this paper is real GDP growth, which
is defined as the year-over-year growth rate of real GDP (item GDPC1 on FRED).

I construct several variables for firm characteristics, following Ottonello & Winberry (2020).
Leverage is the ratio of total debt (sum of items dlcq and dlttq to total assets (atq). Net leverage
is the ratio of total debt minus net current assets (actq) to total assets. Liquid assets (“liquidity ”)
is the ratio of cash and short-term investments (cheq) to total assets.

This yields the full sample. The full sample of non-missing sales growth rate observations has
1,145,568 firm-quarter observations and covers the period 1962Q1 – 2022Q3.

Additional steps yield the cleaned sample, which aims to remove sales growth rate outliers:

1. Remove any firm-quarter observations with negative current assets (actq), total assets (atq),
or liquid assets.

2. To control for acquisitions, remove a firm-quarter observation if acquisitions account for more
than 5 percent of total assets in the current or any of the three preceding quarters. This ensures
that the year-over-year growth rate is not contaminated by previous acquisitions.

3. Remove the observation if net current assets relative to total assets falls outside of [−10, 10].

4. Remove observations with leverage above 10 or below zero.

5. Remove any observations with percentage sales growth rate g below -1 (I do not apply this
filter to log growth rates g̃).
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6. Remove any observations where the ratio of sales to total assets is in the top 0.1% of observations.
This is to clean any sales growth observations that may be due to mistakes in the data.

7. To further account for growth rate outliers, I remove the top and bottom 1% of growth rate
observations in each quarter.

8. Since the data on acquisitions is only available from 1983Q3 onwards, I remove all earlier
observations.

The resulting sample covers the period from 1983Q3 until 2021Q4 and has 499,249 firm-quarter
observations. I merge this sample with information on stock prices (variable PCLOSE) and the first
date of trading (BEGDAT) from CRSP using the PERMCO-GVKEY linking table. I also merge the sample
with information on dates of incorporation from Worldscope Fundamentals (variable INCORPDAT)
using the CUSIP identifier. This allows me to construct firm age as the minimum across 1) the
date of the first observation in Compustat, 2) the first date of trading from CRSP, and 3) the
date of incorporation as indicated in Worldscope Fundamentals. This approach makes use of the
well-populated and accurate information in Worldscope while avoiding negative firm ages, as discussed
in Cloyne et al. (2023).

To be able to work with within-firm time series variation in some parts of my analysis, I perform
a final step of cleaning to yield the streak sample. As in Ottonello & Winberry (2020), I only keep
growth rate streaks of 40 consecutive quarters, and remove all other observations. This yields a
sample of 2,520 unique growth streaks for 2,376 unique companies. 144 companies have two sales
growth rate streaks in the data. The sample period is 1983Q3 until 2021Q4 and there are 151,701
firm-quarter observations. To approximate a balanced panel, the long sample only consider firms
within the clean sample that have observations before 1985Q1 and after 2021Q1. This leaves 661
unique firms. The firms may have missing values within their time series of sales growth rates, but
the share of missing values in the sales data is only 5.6%. In contrast, the streak sample has almost
50% missing values relative to a balanced panel.

Figure 13 shows the number of firm-level observations per quarter for the different samples. The
full sample contains less than 2000 per quarter firms in the 1960s. The number of firms jumps
strongly in the 1980s to around 6000 observations per quarter and keeps rising until the burst of the
dot-com bubble, when the number of observations per quarter peaks at over 8000. Since then, the
number of firms has declined and reaches around 4000 in 2020. In the cleaned sample, the number of
firms is half as high as in the full sample but follows a similar pattern over time. The streak sample
drops more than half of the observations of the cleaned sample and has around 1000 observations
per quarter for most quarters. The number of firms is lower toward the start and the end of the
sample. By construction, the number of observations per quarter is very constant over time for the
long sample.

Despite differences in in the number of observations, the skewness pattern across samples is very
similar. Figure 14 computes Kelley skewness in sales growth rates for each of the four samples.
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Figure 13: Number of Sales Growth Observations per Quarter

Note: The full sample of growth rates covers 1962Q1-2022Q3, and the cleaned
sample covers 1983Q3-2021Q4.

Figure 14: Kelley skewness for different samples

Note: Skewness is computed using 90% Kelley skewness. The sample period is
1983Q3-2021Q4.
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Appendix B Checking the procyclicality of micro skewness

This section describes results on skewness measurement and the relation of cross-sectional skewness
across firms with the business cycle. A priori, this relationship is ambiguous in terms of sign and
strength. Existing theories of business cycle fluctuations offer no clear prior information to guide the
analysis. For example, production network models as in Baqaee & Farhi (2019) show that an increase
in dispersion over firm outcomes reduces output, but this is true irrespective of any asymmetry in the
distribution. Such theories are also consistent with the idea of symmetric cross-sectional distributions
and no correlation between skewness and the business cycle. In contrast, procyclical skewness may
tell a story about firm-specific disasters in recessions and/or idiosyncratic outperformance of some
firms in booms. Countercyclical skewness could occur if the majority of firms perform poorly in
recessions while some are able to achieve high growth rates, yielding a stronger right tail.

The goal of this section is to cleanly establish the correlation between skewness and the business
cycle. This is non-trivial because skewness can be measured in different ways, and some skewness
measures are highly sensitive to outliers. Therefore, I revisit earlier results on skewness in the
cross-section of firm sales growth and add to the existing evidence by paying particular attention to
different forms of skewness measures and the role of outliers. The main result is that skewness across
firms has a positive correlation with the business cycle.

My main data source is Compustat. Compustat contains rich data on firm characteristics,
including balance sheet information, that allow to study potential drivers of cross-firm skewness in
detail. Because the data is of quarterly frequency, I can study business cycle dynamics with greater
detail than with annual data. Especially when identifying shocks that may drive the business cycle,
the quarterly frequency enables cleaner identification and more power. In addition, Compustat data
is available from the early 1960s. It covers most post-WW2 US recessions. In addition, some firms
have long individual time series such that I can exploit time series variation within firms. Compustat
also covers many industries, which is an advantage over existing work that focuses on specific sectors
such as manufacturing. Since different industries may exhibit heterogeneous co-variation with the
business cycle, focusing on a subset of industries is not desirable a priori. I am not aware of any other
US firm-level dataset that satisfies these requirements. Because Compustat is the most commonly
used firm-level dataset for the US, I can directly put my findings in the context of the broader
literature.

A potential drawback is that Compustat only covers publicly listed firms, which are larger on
average, may face different financial constraints than private/small firms, and hence can have different
cyclical behaviour (Axtell (2001), Gertler & Gilchrist (1994)). While smaller firms may be more
cyclical than large firms, Crouzet & Mehrotra (2020) show that this difference is dominated by the
dispersion of firm size and therefore too small to meaningfully affect macroeconomic aggregates. This
suggests that focusing on Compustat firms can be sufficient to understand aggregate fluctuations.
Since Compustat does not provide employment data at the quarterly frequency, I focus on sales only.
Liu (2020) points to general concerns with the data quality in Compustat. Addressing these issues is
beyond the scope of this paper.

I describe the sample construction and data cleaning procedures in Appendix A. The full sample
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applies minimal cleaning procedures and yields a sample of 1,145,568 firm-quarter observations
covering the period 1962Q1 - 2022Q3. The cleaned sample removes observations with high leverage,
acquisitions, negative assets, and potential data mistakes. It also removes the top and bottom 1%
of growth rate observations in each quarter to account for potential outliers. The cleaned sample
has 499,249 firm-quarter observations and covers the period 1984Q2 - 2021Q4. I start from the full
sample to give the most comprehensive picture of skewness dynamics, before later confirming the
results for the cleaned sample.22

Before detailing different skewness measures, I simply plot the density of sales growth rate
outcomes in NBER recessions versus non-recession periods. Figure 15 shows the result using the
cleaned sample.23 The orange line is the density outside of recessions and the blue line shows the
distribution for recession periods. In recessions, sales growth rates are clearly lower on average
(equal-weighted mean of 5.9% versus 13.6%). Although it is harder to see from the figure, the
standard deviations are similar across distributions and actually higher outside of recessions (58.7%
in recessions versus 62.6% outside of recessions). To focus the comparison on the skewness, the green
line adjusts the recession density such that it has the same mean and variance as the non-recession
distribution. The asymmetry of the distribution clearly changes. The rest of this section studies this
change in more detail.

Figure 15: Estimated Densities for Recession vs Non-Recession Quarters

Note: Densities are estimated from the cleaned sample, which covers the period
1984Q2 – 2021Q4. Recessions are defined as by the NBER. The adjusted density
has the same mean and variance as the non-recession distribution.

22In addition, Appendix A shows how to construct a streak sample that only contains observations that are part of a
firm’s sales growth streak of at least 40 consecutive quarters without a missing observation. This is useful for later
parts of the paper that aim to exploit within-firm time series variation. The same appendix also constructs a long
sample that approximates a balanced panel with only few missing values. This section does not make use of either of
these samples.

23As I detail below, the full sample has many outliers, which make it difficult to reliably compare the distributions.
The cleaned sample yields reliable results without requiring further outlier adjustments.
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B.1 Correlation of skewness with the business cycle

To measure skewness more formally, I consider different variants of skewness coefficients. All variants
measure the asymmetry of a distribution. Given observations {xi}i=1,...,N , the third moment is
defined as

SK = E
(xi − µ

σ

)3
, (15)

where µ = E(xi) and σ2 = E (xi − µ)2. The third moment can be arbitrarily large and need not be
finite for fat-tailed distributions.24 Since observations are taken to the third power, the measure is
sensitive to outliers, and its estimation with small samples can be noisy.

Alternatively, the quantiles of the distribution can be used to measure its asymmetry. Hinkley
(1975) proposes

SK2 = (Q1−α −Q0.5)− (Q0.5 −Qα)
Q1−α −Qα

, (16)

where Qα is the α×100% quantile of the distribution of {xi}. The measure is positive if the deviation
of the 1− α quantile from the median is larger than the deviation of the α quantile from the median.
The skewness measure does not require any assumptions on the existence of moments. Since the
quantiles are always finite, they yield a finite measure of skewness even in the presence of fat tails.
The rescaling by overall dispersion (Q1−α−Qα) ensures that skewness lies within [−1, 1]. A common
choice is α = 0.1, which is often referred to as Kelley skewness. While its estimation is more robust to
outliers, the main drawback is that it does not consider information about the tails of the distribution,
which may be of interest in certain cases. Additionally, the choice of α is arbitrary.

Groeneveld & Meeden (1984) suggest a generalization that is independent of the choice of α:

SK3 =
∫ 0.5

0 {Q1−α +Qα − 2Q0.5}dα∫ 0.5
0 {Q1−α −Qα}dα

= µ−Q0.5

E|xi −Q0.5|
(17)

For simplicity, I sometimes refer to this measure as “GM skewness”. Groeneveld (1996) shows that
the estimator of SK3 can be vastly more efficient than the estimator of SK if the data is at least
moderately fat-tailed (Student t-distribution with less than 10 degrees of freedom). Kim & White
(2004) compare the skewness measures introduced above and caution against the use of the third
moment due its sensitivity to outliers.

For these reasons, much of the modern literature on skewness in macroeconomics and finance
makes use of robust skewness measures, most commonly Kelley skewness (SK2). Guvenen et al.
(2014), Pruitt & Turner (2020), Friedrich et al. (2021), Busch et al. (2022), and Guvenen et al. (2022)
use Kelley skewness to study asymmetries in the income distribution. Decker et al. (2016), Ilut et al.
(2018), and Salgado et al. (2023) use Kelley skewness to study asymmetries in distributions of firm
outcomes like sales or employment growth. Ferreira (2018) measures skewness in the distribution
of stock returns using Kelley skewness. Some recent papers in the finance literature use the third
moment instead to measure skewness in the cross section, for example Catherine et al. (2022) and
Oh & Wachter (2022).

24For example, a Pareto distribution with density function f(x) = αxαm
xα+1 for x ≥ xm has finite expected value iff

α > 1 and finite third moment iff α > 3.
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Following the recent literature, the main skewness measure of this paper is Kelley skewness (SK2).
For robustness, I also consider the third moment (SK) and the Groeneveld & Meeden (1984) measure
(SK3). This choice is motivated by two features of the data. First, the distribution of real sales
growth is fat-tailed in Compustat, as I discuss in Section B.2. Second, the number of firm-level
sales growth observations is limited. It never exceeds 10,000 per quarter in the full sample, and lies
between 1,500 and 2,000 in the cleaned sample (see Figure 13). In addition, Kelley skewness can
easily be interpreted and decomposed into downside (Q(1− α)−Q(0.5)) and upside (Q(0.5)−Q(α))
drivers of skewness.

To study the correlation of cross-sectional skewness with the business cycle, I use two variables
of aggregate fluctuation. The first is the aggregate sales growth rate. This measures the real,
year-over-year growth rate in aggregate sales measured across Compustat firms. The second variable
is real year-over-year GDP growth. Both growth rates are in real terms, at the quarterly frequency,
and measured relative to the previous year’s quarter. See Appendix A for details. I focus on these
variables as they can most naturally be compared to firm-level sales. While aggregate sales can be
constructed bottom-up from firm level sales, GDP can be expected to be less directly related to
firm-level sales since GDP is constructed from domestic output instead of worldwide sales of US
firms.

Table 10 shows the correlation of the within-quarter skewness across firms’ sales growth rates
with the business cycle. The top panel uses aggregate sales growth as the measure of aggregate
activity, while the bottom panel uses GDP growth. The different columns refer to different measures
of skewness: Kelley skewness computed with α taking values of 0.9, 0.95 and 0.99, the third moment,
and the GM skewness.

The correlation is positive for the 90% and 95% Kelley skewness measures, with values ranging
from 0.32 to 0.64. Going further into the tail reduces the correlation between skewness and the
business cycle and yields results close to zero for the 99% Kelley skewness, the third moment, and
the GM skewness. The results are similar for both business cycle measures, but the correlations are
consistently weaker when using GDP growth. This is to be expected since firm-level sales are more
closely related to aggregate sales than to GDP.

The table also splits the sample into two subsamples: the period before 1984 and the period
from 1984 onwards. The second subsample coincides with the cleaned sample, which will be used in
later analyses. This allows to understand to which extent the results may be driven by the choice
of the sample period. The correlation of cross-firm skewness with the business cycle is weaker in
the early subsample than in the post-1984 period. This holds across all skewness measures. For the
post-1984 sample, the correlations are all positive and reach values up to 0.86 for the 90% Kelley
skewness. The correlations are again lower when using the third moment and the GM skewness, and
generally indicate no strong association with aggregate activity. The 99% Kelley skewness shows
a positive correlation for this subsample, with a value of 0.42 and 0.45 for sales growth and GDP
growth, respectively.

To understand the differences in the correlations across subsamples better, Figure 16 plots rolling
window correlations between skewness and aggregate sales growth over time. The window width
is fixed at 40 quarters, yielding a time series starting in the early 1970s. The blue line shows the
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rolling correlation between the 90% Kelley skewness and aggregate sales growth. The orange line
uses 95% Kelley skewness, and the green line uses the third moment. Each point on the line shows
the correlation between skewness and aggregate sales over the previous 40 quarters.

The blue and orange line move closely together. The differences in correlation values across
subsamples are due to the sharp drop in correlation in the early 1980s: the correlation is relatively
stable over most of the sample with values ranging between 0.5 and 0.9. When computing the
correlation with data between the early 1970s and the early 1980s, however, the correlation decreases
sharply to a low of around 0 (90% Kelley) or −0.3 (95% Kelley). The subsequent increase in the
correlation is equally sharp, and the correlation for the period 1980-1990 is again between 0.6 and
0.8. The association between firm-level skewness and the business cycle has therefore been stable
over the past decades except for correlations computed on 1972-1987 data.

The correlation of the third moment with the business cycle behaves similarly to the Kelley
measure until the year 2000. While the correlation values are generally weaker, they show the same
pattern of decline and recovery in the 1980s. The main difference to the Kelley measure occurs for
the post-2000 period, in which the third moment has no significant association with aggregate sales
growth. These differences are likely due to the role of outliers, to which I turn next.

Table 10: Correlations of skewness with the business cycle

90% Kelley 95% Kelley 99% Kelley Third moment GM Skewness
With sales growth
Full sample 0.64 0.41 -0.07 -0.04 -0.00
Pre-1984 0.49 0.27 -0.16 -0.05 0.1
Post-1984 0.86 0.78 0.42 0.08 0.22
With GDP growth
Full sample 0.52 0.32 -0.11 -0.14 -0.09
Pre-1984 0.50 0.30 -0.09 -0.21 0.03
Post-1984 0.69 0.68 0.45 0.06 0.11

The first three columns compute skewness using the Kelley measure (SK2), with different choices for α. The
last column computes the Groeneveld & Meeden (1984) skewness coefficient (SK3). The pre-1984 sample is
1962Q1-1983Q4. The post-1984 sample is 1984Q1-2022Q3.

B.2 Outliers in Compustat data

I perform several robustness checks with different data cleaning procedures. The Compustat data
contains many extremely large sales growth rate observations. In the full sample, the largest growth
rate is 24, 353, 692% for the firm Wynn Resorts in 2005Q3. Wynn Resorts develops and operates
high-end casinos and hotels. It has been founded in 2002 and traded on the Nasdaq since then, but
only opened its first resort in 2005Q2. Sales reported in Compustat are virtually zero before the
opening date, and jump to a reported value of 243, 536, 925, 850 US dollars once the resort opens.25

This points toward two problems in the Compustat data. First, reported sales sometimes appear
unrealistically large, which is likely due to data errors. Second, firms with previously low sales volume
that suddenly take up operations experience gigantic sales growth rates. The implications for the

25For comparison, Apple reported global revenue of 117bn US dollars for 2023Q1, see Apple website.
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Figure 16: Rolling Window Correlations of Skewness with Aggregate Activity

Note: Each line represents the rolling-window correlation between aggregate sales
growth and the respective measure of firm-level skewness. The window has a fixed
width of 40 quarters. Each point shows the correlation over the past 40 quarters.

estimation of skewness can be large: Removing the sales growth rate of Wynn Resorts changes the
estimated third moment in 2005Q3 from 79.5 to 63.5, despite there being 6328 observations in the
quarter.

Table 11 compares characteristics of the largest sales growth rate observations to the rest of the
full sample.26 For the largest 50, 100, 500, 1000, and 5000 outliers in terms of the sales growth rate,
the table shows the average (across firms and quarters) of the sales growth rate, sales over assets,
lagged real sales, total real assets, acquisitions over assets, and the share of observations occuring
from the year 2000 onwards. By construction, mean sales growth rates are vastly higher in the outlier
sample. The 50 largest outliers show an average growth rate of over one million percent. Even the
largest 5000 growth rate observations have a mean growth rate of 25, 891%. In the rest of the sample,
the (equal-weighted) mean sales growth rate falls as more outliers are removed and reaches 21% when
5000 outliers are cleaned.

Mistakes in the reported value of sales can manifest as disproportionately large sales relative to
total assets. The ratio of sales over total assets is 9.4 for the top 50 outliers, whereas it is 0.3 for the
rest of the sample. The value falls as larger samples of outliers are considered but stays constant for
the rest of the sample, suggesting that the high sales-to-assets ratios among outliers are driven by
the very largest sales growth observations.

Large growth rate observations can also occur when firms have previously experienced virtually no
sales but were already listed on a US stock exchange. For example, this can be the case for developers

26Additional characteristics that remain unreported show no clear patterns between outliers and the rest of the
sample. For example, the outliers considered here are not concentrated in a certain industry, do not only occur for
firms with high leverage, and do not cluster in the Covid period.
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such as in the case of Wynn Resorts explained above. Another example in the data are biotech
companies that sell shares to finance the development of a new product: As soon as the product
hits the market, sales soar from previously miniscule levels. The data confirms that four-quarter
lagged real sales (which enter the growth rate calculation) are considerably smaller among the outlier
observations than in the rest of the sample. Again, this is especially true for the top 50 outliers. The
outlier firms are also considerably smaller in terms of total assets. The top 1000 outlier observations
correspond to firms with real assets of about 200mn US dollars, whereas the average balance sheet
size in the rest of the sample is over 4bn USD.

Firms may also experience a sudden surge in sales if they merge with or acquire another firm.
To test if mergers and acquisitions explain some of the outliers, I compute the share of acquisition
expenditure relative to total assets. While the top 50 outlier firms do not have a higher expenditure
on acquisitions than the rest of the sample, the top 1000 outliers spend 3.5% of total assets on
acquisitions compared to 1.2% in the rest of the sample. This suggests that a significant share of
outliers may be explained by M&A activity.

Lastly, to study why the outlier-sensitive third moment shows lower correlations of skewness with
the business cycle for the post-2000 period (as shown in Figure 16), the bottom panel of Table 11
contains the share of observations that occur in the year 2000 or after. While only 37% of observations
in the full sample occur in the post-2000 period, among outliers these years account for 52 to 78
percent of observations. Especially the very largest outliers are clustered in the 2000s and 2010s,
which may explain the weak correlation between aggregate activity and skewness as measured by the
third moment.

In summary, sales growth outliers in the Compustat data have vastly larger values than the
rest of the sample and may bias the skewness estimation significantly. Extreme outliers can be
due to mistakes in the data (high sales relative to total assets), a low base level of sales, or due to
acquisitions. The next section aims to control for these factors and understand their implications on
the correlation between skewness and the business cycle.

B.3 Outlier correction and other robustness checks

To get as clear a picture on the role of outliers as possible, I use different methods to control for
outliers and compare their effect on the correlation between cross-sectional skewness and the business
cycle. The first set of controls removes the top and bottom x% from the sample. This addresses
outliers across the entire sample, but can potentially remove outliers asymmetrically within a given
period. Since skewness is a measure of asymmetry, this method may fail to accurately control
for outliers if there remain some observations that bias the skewness estimates in certain quarters.
A second set of controls removes the top and bottom x% of observations for each quarter. This
necessarily removes as many observations at the top and the bottom of the distribution in any given
quarter. The drawback is that it might fail to remove some outliers in certain quarters while removing
observations in other quarters that wouldn’t necessarily be categorized as outliers when considering
the entire sample.

Table 12 contains the results. Panel a uses aggregate sales growth as the business cycle indicator,
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Table 11: Characteristics of largest sales growth rate outliers

Number of outliers
50 100 500 1000 5000

Mean sales growth rate
Outliers 1,265,899% 738,290% 198,418% 110,001% 25,891%
Rest of sample 78% 69% 47% 38% 21%
Sales over Assets
Outliers 9.4 9.7 2.8 2.2 1.2
Rest of sample 0.3 0.3 0.3 0.3 0.3
Lagged real sales
Outliers 562 766 6,089 8,102 91,340
Rest of sample 479,371 479,391 479,546 479,741 481,294
Total real assets
Outliers 424,798 260,620 256,979 202,233 224,414
Rest of sample 4,041,914 4,042,091 4,043,334 4,044,791 4,057,315
Acquisitions over Assets
Outliers 0.5% 2.3% 3.5% 3.1% 2.5%
Rest of sample 1.2% 1.2% 1.2% 1.2% 1.2%
Share of post-2000 observations
Outliers 78% 73% 63% 60% 52%
Rest of sample 37% 37% 37% 37% 37%

All values are averages over all firm-quarter observations in the respective samples. Rest of sample refers to the full
sample without the growth rate outliers. Some statistics are subject to necessary data cleaning. For computing
sales over assets, I remove all observations with negative or zero assets. For acquisitions over assets, I remove all
observations with negative or zero assets and all observations with negative acquisitions. Acquisitions over assets
are computed for the current and the three preceding quarters. Real sales and total real assets are in thousands of
2015 US dollars, using the GDP deflator.

panel b uses GDP growth. The values for x are 0.1, 1, and 2. I compute the same skewness measures
as above. The results are similar to those from Table 10. The correlation estimates are generally
strongest for the 90% Kelley skewness measure, for the post-1984 period, and for aggregate sales
growth as opposed to GDP growth as a measure of aggregate activity. Even after removing the
top and bottom 2% of outliers, the correlation between the third moment and sales growth is -0.37
for the post-1984 period. When removing the top and bottom 2% of outliers in every quarter, the
correlation changes to 0.65 for the same period and skewness measure. This suggests that the sales
growth rates in Compustat are frequently large enough to make the third moment a rather unreliable
measure of the asymmetry in the cross section.

In contrast, the skewness measures based on quantiles paint a more consistent picture. The
correlations are generally positive. The 99% Kelley skewness sometimes suggests correlations around
zero and potentially slightly negative, but this behaviour is driven by the pre-1984 period. In the
sample starting in 1984, the correlations are positive across all variants for outlier control. For the
post-1984 sample, the correlations range from 0.33 to 0.86 and are mostly above 0.6. This holds for
both aggregate sales growth and GDP growth as measures of the business cycle. The quantile-based
skewness measures therefore indicate a strong positive correlation between skewness and the business
cycle. Recessions are periods in which the left tail of the cross-firm sales growth distribution widens,
such that some firms experience particularly bad outcomes. This supports the results of Salgado
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et al. (2023).
Earlier findings in Higson et al. (2002) and Higson et al. (2004) suggest that skewness across

firms is countercyclical instead of procyclical. Higson et al. (2002) use annual Compustat data from
1950-1999 and compute skewness via the third moment. To control for outliers, they remove all
observations with growth rates larger than 25% in absolute value (robustness checks include cutoffs of
50% and 100%). Their main finding is a negative association between GDP growth and their skewness
estimate. Higson et al. (2004) perform a similar analysis for a sample of UK quoted companies from
1967 to 1999, again applying the symmetric cutoff rule to remove outliers. They confirm their earlier
evidence of countercyclical skewness.

The symmetric cutoff rule may explain the results of countercyclical skewness. Since growth
rates are positive on average, it is not clear that applying a rule that removes any growth rates
symmetrically around zero is desirable. Instead, one could apply these cutoffs symmetrically around
the mean growth rate of the sample. More importantly, business cycle fluctuations imply that
observations above 25% year-over-year growth should be expected more frequently in boom times
relative to recessions, and growth rates below -25% should be expected to occur more regularly in
recessions than in booms. The fixed cutoff values imply more observations in the left tail are removed
during recessions (leading to higher skewness), while more observations in the right tail are removed
during booms (leading to lower skewness). This can bias the correlation between skewness and the
business cycle downward.

I confirm this intuition in Table 13. Using the sample of quarterly growth rates from Compustat,
I find that applying a symmetric cutoff rule like in Higson et al. (2002) biases the skewness estimation
and leads to significantly lower correlation estimates. The correlation becomes more negative for
skewness measures that rely more strongly on the tail, and as the cutoff rule becomes more stringent.
The 90% Kelley measure gives a correlation with sales growth of 0.64 for the 100% cutoff rule, but a
correlation of -0.27 for the 25% cutoff rule. For the given cutoff rules, most of the correlations are
negative and can reach values up to -0.81. However, it appears that the strength of these results is
driven by the bias introduced through the cutoff rules themselves.

The cutoff rules strongly change certain properties of the sample. Table 14 reports several
descriptive statistics for the samples associated with the different methods for outlier removal. The
average growth rates when applying the cutoff rules are considerably lower since a larger share of
highly positive growth rates is removed. The cutoff rule also enforces symmetry around zero in terms
of the maximum and minimum values, which is not the case for the other methods. Importantly, the
cutoff rules remove big parts of the original sample. For example, the 25% cutoff rule drops over
370,000 observations, or more than 30% of the sample. Enforcing the 25% cutoff is equivalent to
removing the top 22% of growth rate observations and dropping the lowest 10% of observations. I
conclude that skewness estimation can be highly sensitive to the choice of data cleaning procedure.
The evidence presented so far speaks strongly in favour of procyclical skewness across a variety of
estimates and samples, whereas results of countercyclical skewness appear to be driven by biases
introduced through certain methods for outlier removal.

Since percentage growth rates are bounded below by -100% but are not bounded above, skewness
estimates may be biased disproportionately by positive outliers. To test if this biases the correlation
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estimates, Table 15 contains results using growth rates computed as log differences, which are not
bounded below. The correlations are positive across skewness measures. The values decrease for
measures that rely more on the tail and are generally higher in the post-1984 period. The results do
not depend strongly on the business cycle measure and are very similar for aggregate sales versus
GDP growth. Removing outliers by dropping the 2% of largest and smallest observations in each
quarter increases the correlations for especially for the third moment and the GM skewness. In the
post-1984 period, the correlations range from 0.72 to 0.84 for aggregate sales and 0.56 to 0.72 for
GDP growth. Overall, the results based on log differences support those obtained using percentage
growth rates.

Table 15 also shows correlation estimates using weighted growth rates. Since many outliers are
due to firms with small base levels of sales, I weight the sales growth rates with lagged sales. This is
equivalent to simply using four-quarter differences of real sales (st − st−4) instead of growth rates.
Using first differences puts higher weight on large firms, which are likely to have a larger impact on
aggregate fluctuations. Just like for sales growth rates, it is a priori not clear that the skewness in
the cross section should be correlated with the business cycle. Recessions could materialize as shocks
that reduce firm sales by the same rate across all firms, in which case the skew of the distribution
of sales changes would remain unaffected. However, the data suggest a clear association between
changes in the asymmetry of the sales change distribution and the business cycles. The correlations
are positive across measures and get stronger when outliers are removed.

So far, the analysis has focused on the full sample to provide the most comprehensive perspective
on the Compustat data. I confirm that the results also hold for the cleaned and the streak sample,
which will be used in later parts of the analysis. Table 16 shows the results. Panel a computes
correlations between skewness and aggregate sales growth for the three different samples using
different skewness measures. The correlations are higher for the cleaned sample and the streak
sample, especially for skewness measures that are more sensitive to the tails, like the 99% Kelley
skewness and the third moment. Correlation estimates range from 0.13 to 0.82, and from 0.73 to 0.82
when excluding the 99% Kelley skewness and the third moment. Panel b repeats the analysis using
GDP growth. The results are very similar and confirm the procyclicality of cross-firm skewness.

Panel c of Table 16 shows the mean, minimum, and maximum sales growth rate observations in
the sample. While many growth rate observations have been dropped compared to the full sample,
as is evident from the number of observations shown in panel c, the range of growth rates is still
large in the cleaned data. The minimum growth rate is -95%, while the maximum growth rates are
1,782% and 1,283% for the cleaned and the streak sample, respectively. The (equal-weighted) mean
growth rates are 13% and 7%, which contrasts with the average growth rate of 134% in the full
sample including outliers.

Panel d reports several sample characteristics that have been shown to differ systematically
between outliers and the rest of the sample, see Table 11. All samples have similar sales over assets,
but lagged real sales are highest for the streak sample. Total real assets fall from the full to the
cleaned sample, but are higher in the streak sample than in the cleaned sample. These differences
arise because the streak sample only considers firms that exist for at least 40 quarters, which are
likely to be larger than younger firms. Average acquisitions over assets decrease from 1.2% in the
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full sample to 0.2% in the clean sample and to 0.1% in the streak sample. This is in line with the
observation that many outliers had been associated with acquisitions.

To conclude this subsection, Figure 17 plots the time series of skewness against the business cycle.
The left panel plots skewness against aggregate sales growth and the right panel against GDP growth.
Skewness is estimated from the cleaned sample using the Kelley measure with α = 0.9. As the
correlation estimates suggest, it becomes visible that skewness is strongly procyclical. Every downturn
in aggregate sales is associated with a closely following decline in the cross-sectional skewness: Micro
and macro skewness are closely associated. The pattern is similar but somewhat weaker for GDP
growth. In particular, since the decline in aggregate sales around 2015 is not associated with a decline
in GDP growth rates, the skewness measure indicates a downturn during that period which is not
reflected by GDP growth as a business cycle indicator. The correlation between GDP growth and
micro skewness is still high. The weaker association is rather a reflection of the link between sales
and GDP than on the association between micro and macro skewness, which is very strong when
focusing on sales growth (left panel).

A detailed interpretation of the business cycle co-movement of the sales distribution requires
to consider not just the changes in skewness over time, but also the level of skewness. Figure 17
indicates cross-sectional skewness is positive in general and the distribution becomes more symmetric
in recessions. However, this behaviour may be driven by the lower bound on growth rates when
computing percentage growth. To interpret the level of skewness, Figure 18 compares two different
skewness estimates against aggregate sales growth. The left panel computes skewness based on year-
over-year log differences of real sales and the right panel computes skewness based on year-over-year
differences in real sales levels. Neither measure imposes a lower or upper bound on the underlying
data. The results indicate that cross-sectional skewness is positive in expansions but turns negative
during recessions. This supports the interpretation of recessions as being associated with firm-level
disasters (left skew), while booms coincide with strong growth for some firms (right skew).27

The following subsections will study additional aspects of the relation between micro and macro
skewness. To simplify the analysis, I proceed by working with the cleaned sample and using the 90%
Kelley measure. This measure is widely used in the recent literature, and the analysis presented in
this subsection shows that it accurately captures the positive correlation between skewness and the
business cycle. While it presents the strongest correlation results compared to the other measures,
even measures that go far into the tails of the distribution yield qualitatively (and often quantitatively)
very similar results.

B.4 Lead-lag relationship

So far, the analysis has focused on the contemporaneous correlation of skewness with the business
cycle. This section provides additional evidence on potential lead-lag relationships. While there is
mild evidence of short-term lead and lag correlations, the main result is that the contemporaneous
correlation is the strongest and is therefore the main focus of the analysis.

27As shown in Table 15, using percentage growth rates, log differences, or differences in levels of real sales leads
to identical interpretations for the procyclicality of cross-sectional skewness. All measures are highly correlated and
indicate very similar changes in skewness, but they give different interpretations for the level of skewness.
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Figure 17: Cross-sectional skewness vs aggregate activity

Note: The left figure compares skewness to year-over-year aggregate sales growth. The right panel plots the same
skewness estimate against year-over-year GDP growth. Skewness is estimated using 90% Kelley skewness. The sample
period is 1984Q2-2021Q4.

Figure 18: Cross-sectional skewness vs aggregate activity - Alternative skewness series

Note: Aggregate activity is measured by year-over-year aggregate sales growth. The left panel computes skewness
based on log differences of real sales. The right panel plots skewness estimates for four-quarter differences of real sales
(st − st−4). Skewness is estimated using 90% Kelley skewness. The sample period is 1984Q2-2021Q4.

Figure 19 plots the correlations ρj = corr (skewt+j , growtht) for j = −24, ..., 0, ..., 24. Skewness
is the 90% Kelley measure, and aggregate growth refers to sales growth. The contemporaneous
correlation is highest at 0.82, as estimated before. Aggregate growth and skewness also have a high
correlation when skewness is lagged by up to two quarters or leads by up to three quarters. Lagged
correlations are lower than lead correlations. For example, lagging skewness by one period yields a
correlation of 0.59, while leading it by one quarter yields a correlation of 0.77.

To control for lags more formally, Table 17 shows estimation results from regressions of aggregate
activity on skewness. All variables are standardized to make the coefficient sizes comparable across
variables. The left panel uses aggregate sales growth as the dependent variable, while the three
columns on the right use GDP growth. A large share of the variation in aggregate sales growth can
be explained by skewness alone: Regressing sales growth on skewness yields an adjusted R2 of 0.68.
Including four lags of the skewness measure does not improve the linear fit and does not decrease the
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coefficient on contemporaneous skewness. The lagged coefficients are generally insignificant, except
for a significant yet small coefficient estimate on two-quarter lagged skewness. Controlling for lagged
sales growth (column 3) improves the fit slightly and yields a significant coefficient on the first two
lags. The coefficient on skewness still remains significant, and the magnitude remains large: All else
equal, a one standard deviation increase in skewness is associated with a 0.46 standard deviation
increase in aggregate sales growth. The results for GDP growth as the dependent variable are similar.
Due to the weaker link between sales and GDP, the R2 is generally lower and the coefficient on
skewness is lower. Nevertheless, it remains significant at the 5% level across regressions. The only
exception is the regression controlling for lagged GDP growth (column 6), where the coefficient on
skewness is only significant at the 10% level and drops to 0.22.

Figure 19: Lead-lag correlations of Skewness vs Aggregate Growth

Note: The estimates are based on the cleaned sample with a sample period of
1984Q2 – 2021Q4.

B.5 Level of aggregation

This section provides the motivation for focusing on skewness across firm outcomes. If industry shocks
were the main driver of business cycle fluctuations, it could be sufficient to focus on skewness across
industries. For example, the analysis of Dew-Becker et al. (2021) focuses on industries. However, this
can miss important variation if firm-level shocks are the origins of aggregate fluctuations or, more
generally, if there is additional information at the firm level that is lost through aggregation to the
industry level. The following results indicate that the association between skewness and aggregate
fluctuations is strongest at the firm level.

Figure 20 shows the results of univariate regressions of aggregate sales growth on skewness
estimated at different levels of aggregation. I compute skewness in the cross-section at the firm level
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and across 2-, 3-, 4-, and 5-digit NAICS industries. The left panel shows the coefficient estimates
from regressions with standardized data. The black error bars indicate 95% confidence intervals.
The coefficient rises from around 0.4 at the 2-digit NAICS level to around 0.8 at the firm level. The
linear relation between cross-sectional skewness and aggregate activity is decreasing with the level
of aggregation at which skewness is estimated. The right panel shows the corresponding R2 values
for the regressions. The linear fit is again decreasing with the level of aggregation. At the 2-digit
NAICS level, the R2 is below 0.2. At the firm level, the R2 is almost 0.7.

To further show that skewness across firms is associated with aggregate fluctuations beyond
industry effects, I compute skewness across demeaned firm growth rates and re-estimate the univariate
regressions of aggregate growth on skewness. The demeaned growth rate of firm i in industry j at
time t is gmi,j,t = gi,j,t− ḡj,t, where ḡj,t is the sales growth rate in industry j. I compute the demeaned
growth rates for NAICS industries at the 2-, 3-, 4-, and 5-digit level. The regressions results are
shown in Figure 21. The left panel shows the coefficient on skewness and the right panel show the R2.
Demeaning at the 2-digit level leaves the coefficient on skewness above 0.5 and the R2 is above 0.25.
Clearly, industry-level variation accounts for some of the association of skewness with the business
cycle, but a significant share of variation remains to be explained by firm-level skewness.

With lower levels of aggregation, the coefficient falls and the linear fit decreases. At the 5-digit
level, the coefficient is 0.2 and the R2 is 0.04. However, industries at the 5-digit level are very narrow
and there are only seven firms per quarter in the average 5-digit NAICS industry. The median number
of firms per quarter and 5-digit NAICS industry is three. In contrast, 2-digit NAICS industries have
144 firms on average. The weaker results for increasingly narrow industry definitions need to be
interpreted with this in mind.

To further support the idea that firm-level skewness is a relevant object of interest, I also estimate
multivariate regressions with the different skewness measures from Figure 20 (not based on demeaned
growth rates) simultaneously included as explanatory variables. Table 18 shows that including
skewness across 2-digit NAICS industries adds no explanatory power beyond firm-level skewness
and leaves the coefficient on firm-level skewness essentially unchanged (column 1). When including
skewness estimates for all levels of aggregation, the R2 increases only slightly and the coefficient
on (standardized) firm-level skewness is much larger than on the other (standardized) skewness
measures. Regressing aggregate sales growth on the difference between firm-level skewness and
skewness across 2-digit NAICS industries results in a smaller but strongly significant coefficient
estimate. The linear fit is considerably lower. The results are very similar for GDP growth as the
dependent variable, except that the R2 values are generally lower: Firm-level skewness is most closely
associated with aggregate activity, even after controlling for skewness across industries at different
levels of aggregation.

Overall, the results of this subsection suggest measuring skewness at the firm level yields the
most informative measure for aggregate activity. A part of the skewness captured at the firm level is
driven by skewness across industries. Controlling for industry-level shocks will therefore be important.
Nevertheless, focusing only on the industry level may miss important variation, and in fact only
explains a small share of the variability in aggregate activity.
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Figure 20: Growth vs Skew by Level of Aggregation

Note: The left figure plots coefficients from univariate regressions of aggregate sales growth on skewness, where
skewness is computed for different levels of aggregation. The black bars show 95% confidence intervals. The right
panel shows the corresponding R-squared value for each regression. The data is from the cleaned sample, covering the
period 1984Q2 – 2021Q4. All regressions include a constant.

Figure 21: Growth vs Skew across Firms - Controlling for Industry Growth

Note: The left figure plots coefficients from univariate regressions of aggregate sales growth on skewness across
firm-level sales growth rates, controlling for industry growth at different levels of aggregation. The black bars show
95% confidence intervals. The right panel shows the corresponding R-squared value for each regression. The data is
from the cleaned sample, covering the period 1984Q2 – 2021Q4. All regressions include a constant.

B.6 Skewness vs Dispersion

A large literature uses cross-sectional dispersion as a proxy for uncertainty in the economy and
studies its business cycle implications (see Bloom (2014) for a summary and Bloom et al. (2018) for
a recent application). Dispersion is commonly found to be countercyclical: The spread across firm
outcomes increases in recessions and decreases during booms. Are the results on the procyclicality of
skewness robust to controlling for time-varying dispersion?

I estimate regressions of aggregate activity on dispersion and skewness to answer this question.
To be consistent with the skewness measurement, I compute dispersion as the difference between the
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90th and the 10th percentile of the cross-sectional distribution: Dt = Q0.9,t −Q0.1,t. Skewness is
estimated as the 90% Kelley skewness, and aggregate activity is measured by aggregate sales growth
or GDP growth. Table 19 shows the results. All variables are standardized to make the interpretation
of coefficients easier.

Dispersion itself explains 17% of the variation in aggregate sales and is significantly correlated
with the business cycle (see column 1). The coefficient and the R2 are lower than in an equivalent
univariate regression of aggregate activity on skewness, see the leftmost column of Table 17. Including
both dispersion and skewness simultaneously shows that dispersion is not significantly associated with
business cycle fluctuations conditional on controlling for skewness (column 2). The coefficient estimate
for dispersion is -0.04 compared to 0.84 for skewness. Compared to the univariate regression of
aggregate activity on skewness (Table 17), including dispersion in the regression adds no explanatory
power in terms of adjusted R2 and does not affect the coefficient estimate on skewness. This result
is robust to removing the Covid period (column 3) and is qualitatively identical when using GDP
growth as the business cycle indicator (columns 4-6).

In contrast to a large literature that focuses on the cross-sectional dispersion of firm outcomes,
these results suggest that cross-sectional skewness may be the more important object to understand
business cycle fluctuations. These findings echo the work of Guvenen et al. (2014), who find that the
association of cross-sectional dispersion in the income distribution with the business cycle is driven
by skewness. The results are also in line with Figure 15, which shows that dispersion (measured as
the standard deviation) is similar across recession and non-recession periods, whereas the mean and
skewness are changing significantly.

Focusing on skewness instead of dispersion can have strong implications for theoretical work.
In the uncertainty literature, an increase in cross-sectional dispersion has theoretically ambiguous
effects on output (see Bloom (2014) for a discussion).28 Firms may be risk-loving if they are able to
contract in recessions and expand in booms to benefit from growth opportunities (Oi-Hartmann-Abel
effect). Alternatively, the real options theory posits that firms adopt a wait-and-see approach if
the future becomes more uncertain and they face adjustment costs, which leads to a contraction.
In contrast to changes in uncertainty, skewness captures an increase in upside or downside risks,
which can be expected to have unambiguous effects on firm decisions (all else equal). Supporting this
intuition, Salgado et al. (2023) find that shocks that increase cross-sectional skewness have stronger
contractionary effects than dispersion shocks.

In the context of real options theory, Bernanke (1983) establishes the ’bad news principle’: The
investment decision of a firm is based on the expected value of future bad outcomes, irrespective of the
potential for good outcomes. In this sense, downside risk is the key driver of a decline in investment.
Motivated by this view, Table 20 studies the relation between aggregate activity and different parts
of the cross-sectional distribution. The business cycle indicator is aggregate sales growth. The left
columns use independent variables computed from the distribution of percent sales growth rates, while

28The object of interest in the uncertainty literature is dispersion in the space of future possible outcomes. Since
the distribution of expected future outcomes is difficult to measure, many papers use proxies such as cross-sectional
dispersion in firm-level realizations. In a model with many firms, an increase in uncertainty for each individual firm
manifests as a larger dispersion of shocks hitting the firms, and hence a larger dispersion across firm outcomes. In this
sense, cross-sectional dispersion of firm outcomes is related to uncertainty about the future.
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the right columns use variables based on the distribution of log differences in sales. The difference
between the 90th percentile and the median (Q(0.9)–Q(0.5)) is positively associated with aggregate
activity, while the difference between median and 10th percentile is negatively associated with sales
growth. In contrast to the bad news principle, the upper half of the growth rate distribution is related
to aggregate activity. The findings are similar across both types of dependent variables, and remain
similar when considering individual quantiles instead of differences across quantiles. The median
is generally most strongly associated with aggregate activity. The differences between coefficients
on the 90th and the 10th percentile are small. The R2 values are high across regressions and vary
between 0.59 and 0.85. In summary, all parts of the cross-sectional distribution are associated with
aggregate activity.

While all parts of the sales growth distribution are associated with aggregate activity, the different
parts can exhibit different time series behaviour. Figure 22 shows the 90th percentile of (log) sales
growth minus the median, and the median minus the 10th percentile.29 Dispersion increases in
recessions, but mostly because bad growth rate outcomes become more frequent. Most of the volatility
of changes in the growth rate distribution is concentrated below the median, while the difference
between the 90th and the 50th percentile stays relatively constant. The two notable exceptions are the
dot-com boom in the early 2000s and the post-Covid recovery, during which some firms experienced
very strong growth rate realizations. Overall, the co-movement of dispersion with aggregate activity
is driven by skewness. While upside potential changes little during recessions, downturns are periods
with larger potential for bad growth rate realizations.

Appendix C Details: Response of micro skewness to aggre-
gate shocks

Local projection specifications and robustness. Table 21 describes the construction of all data
entering the local projections, including the shocks. I use existing data or the authors’ replication
codes for all shock series. For the baseline specifications, micro skewness and aggregate sales growth
are computed using the streak sample as described in Appendix A. Figure 23 reports the results
from several robustness checks on the impulse responses of micro skewness to aggregate shocks. All
alternative specifications yield very similar results, sometimes so close that the different impulse
responses cannot be clearly distinguished from the plot because they coincide for the first three
decimals. The black dashed line reports the baseline results from Figure 6. The blue lines are impulse
responses from regressions using four lags instead of two. Regressions underlying the orange lines
include lagged values of aggregate sales growth as controls. Impulse responses for skewness computed
using the cleaned sample instead of the streak sample are shown in green.

Idiosyncratic shock series. Figure 24 plots the skewness in year-over-year sales growth rates
(blue; left axis) against skewness in I/B/E/S sales growth rate forecast errors (red; right axis). Clearly,

29I use growth rates computed from first differences of log (real) sales for this figure since using percent growth rates
yields a figure that is dominated by volatility in the upper tail. This is because percent growth rates are bounded
below by −1 while they face no upper bound. Log growth rates make the distribution of possible growth rate outcomes
more symmetric.
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Figure 22: Upside vs Downside Risk

Note: Upside risk is the difference between the 90th and the 50th percentile.
Downside risk is the difference between 50th and the 10th percentile. The quantiles
are computed for the distribution of log growth rates. The data is from the cleaned
sample, covering the period 1984Q2 – 2021Q4.

the two series are closely correlated throughout multiple downturns. It appears that skewness in
forecast errors may be leading skewness in sales growth rates.

To test the predictability of the idiosyncratic shock series ξt, Table 22 reports the results from
a regression of the shock series on eleven different macroeconomic time series (all lagged) that are
used in the local projections. The adjusted R2 is only 11%, suggesting that the shock series is widely
unpredictable. This is true even though the set of predictors includes forward-looking variables such
as Treasury yields, stock returns, and the excess bond premium.

Firm-level impulse responses. To build intuition for the firm-level impulse responses,
Figures 25 - 30 show the firm-level impulse responses for ExxonMobil, McDonald’s, Marriott Hotels,
Caterpillar, IBM, and Walt Disney. These six companies represent different sectors of the US economy
and different degrees of cyclicality. This is reflected in their impulse responses. ExxonMobil generally
shows strong responses to aggregate shocks and is particularly exposed to the oil supply shock. In
contrast, the sales growth of McDonald’s is much less volatile and shows an insignificant response to
oil supply shocks. Marriott’s sales respond weakly to monetary shocks but significantly to uncertainty
shocks. Caterpillar is a very cyclical company and its large impulse responses reflect this. IBM
responds more to monetary and TFP shocks than to oil or uncertainty shocks. Lastly, Disney’s
sales show weak responses to all aggregate shocks. As an additional validation exercise, I compare
the impulse responses of different companies to a one-standard deviation oil supply shock, which
is the only shock clearly identifiable as originating from a particular sector of the economy. Figure
31 shows the impulse responses of four big oil corporations in blue and compares their impulse
responses to those of IBM, McDonald’s, and Disney. Energy corporations show significantly larger
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Figure 23: Robustness: Comovement of growth and skew after aggregate shocks

Note: Red shaded areas are 90% confidence bands for the results using the Covid sample,
based on Newey-West standard errors. Robustness check for the Covid sample has not been
conducted for the TFP shocks due to data availability. Shock magnitudes are normalized to be
one standard deviation. The signs of the TFP shocks are reversed to be contractionary.

sales responses to oil supply shocks. Taken together, the firm level IRFs appear reasonable in terms
of their qualitative features.

Robustness of firm-level IRFs. Figure 32 shows that the bottom-up impulse responses of
micro skewness are robust to different specifications. Including four lags of all controls (blue lines) or
adding lagged QoQ stock returns (orange lines) yields very similar results. The green lines show the
impulse responses of skewness when computing firm-level IRFs for year-over-year stock returns as the
dependent variable. The response of skewness in stock returns is similar to the response of skewness
in sales growth rates, though the magnitudes can be larger. The response of return skewness to the
TFP news shock poses an exception from this rule.

Robustness of large vs small firm IRFs. Figure 33 repeats the analysis of Figure 10 but
excludes the bottom 10% of the firm size distribution from the analysis. Similarly, Figure 34 compares
the responses of the top 30% against the bottom 70%. The results confirm the main points of the
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Figure 24: Skewness in sales growth rates and I/B/E/S forecast errors

baseline results: The impulses responses of the largest firms in the Compustat sample are not less
skewed than the responses of the smaller firms. Because the largest firms account for the vast majority
of aggregate sales, they account for most of the decline in aggregate sales following an aggregate
shock.

Because small firms feature more volatile sales growth time series, their impulse response estimates
may be more volatile as well and the bottom-up skewness response for these firms may be less reliable.
I argue that this concern does not affect the main results in this paper. First, the key insight of the
analysis is that the response of the largest firms is also skewed, which holds independently of the
result for the smaller firms. Second, many of the smaller firms are still very large in the context of
the overall US firm size distribution, making the estimation of firm-level IRFs an arguably reasonable
approach, especially if one is willing to accept the firm-level IRFs for the very largest firms. Third, I
conduct a robustness check confirming my results without relying on the estimation of firm-level
IRFs. I separately construct a micro skewness index for the largest firms (top 10%) and the rest of
the firms. Firms are grouped into the two size bins each quarter and firm size is measured as the
average real sales over the previous four quarters. Given the two indexes, I estimate their response
to an aggregate shock using the local projection specification from equation 5. Figure 35 shows the
results. Skewness for the largest firms declines significantly following a contractionary aggregate
shock, while skewness for the rest of firms does not show a clear decline for any of the shocks. Some
of the estimates for smaller firms’ skewness even appear to indicate an increase in the skewness
index as opposed to a decrease, though the estimates are often insignificant and generally smaller in
magnitude than for skewness of the largest firms.

Figure 36 shows the contributions of different growth rate (IRF) and size bins to the decline in
aggregate sales following an aggregate shock. The methodology is outlined in Section 4.5. Across the
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six different shocks, the following results hold true: 1) The majority of the sales decline is driven
by firms with the poorest growth rate outcomes. 2) Within each bin, the majority of the response
is explained by the very largest firms in the sample (top 10%). This is true even among the worst
performers. 3) These large and responsive firms account for roughly one third of the overall economy’s
response to a shock, even though they only make up about 1.5% of all firms in the sample. The
aggregate growth response is least concentrated for the uncertainty shock, where large and responsive
firms account for 23% of the aggregate response, and is most concentrated for the oil shock (38%).

Construction of firm characteristics to explain IRF heterogeneity. The quarterly firm
characteristics are constructed as follows. Real variables are obtained by deflating with the GDP
deflator.

• Age: Log years since inception, defined as the minimum of the start of trading data in
CRSP (begdat), the first data point in Compustat, and the date of incorporation recorded in
Worldscope Fundamentals

• Size: Log real sales (saleq)

• Leverage: Current liabilities (dlcq) plus long-term liabilities (dlttq), divided by total assets
(atq)

• Liquidity: Cash and short-term investments (cheq), divided by total assets (atq)

• Dividend payer: Equals one if dividends (dvpq) are larger than zero, equals zero otherwise.

• Fixed assets: Cost of fixed property (ppentq), divided by total assets (atq)

• Short-term debt: Short-term liabilities (dlcq), divided by one-quarter lagged total assets (atq)

• Long-term debt: Long-term liabilities (dlttq), divided by one-quarter lagged total assets (atq)

• Sales / Assets: Nominal sales (saleq), divided by total assets (atq)

• Profitability (ROA): Income before extraordinary expenses (ibq), divided by total assets (atq)

• R&D: Research and development expenses (xrdq), divided by lagged total assets (atq)

• Inventory: Total inventories (invtq), divided by lagged total assets (atq)

• Recession indicator: Equals one if the quarter in the firm’s sample is an NBER recession quarter

• Aggregate growth: Year-over-year growth in aggregate real sales (see equation 14)

• Industry growth: Year-over-year growth in industry-level real sales, with industries defined at
2-digit NAICS level

• Firm growth: Year-over-year growth in firm-level real sales

• Pre-recession firm growth: Rank in the distribution of year-over-year firm-level sales growth
rates if the quarter is at most three quarters before the start of a NBER recession, missing
value otherwise
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All firm characteristics are averaged over time to obtain a single observation per characteristic and
firm. Since the distribution of shocks may be unequal within each firm’s sample, each quarter is
weighted by a share indicating the size of that quarter’s shock: ωt = |shockt|/(

∑
τ |shockτ |). This is

to reflect that the values of firm characteristics prevailing when large shocks hit matter more for
explaining differences across impulse responses than firm characteristics prevailing when shocks are
small. The results are similar when taking simple averages and available upon request.

Figure 25: ExxonMobil: Sales Growth Responses to Aggregate Shocks

Note: Blue shaded areas are 90% confidence bands, based on Newey-West standard errors.
Shock magnitudes are normalized to be one standard deviation. The signs of the sentiment
and TFP shocks are reversed to be contractionary.
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Figure 26: McDonald’s: Sales Growth Responses to Aggregate Shocks

Note: Blue shaded areas are 90% confidence bands, based on Newey-West standard errors.
Shock magnitudes are normalized to be one standard deviation. The signs of the sentiment
and TFP shocks are reversed to be contractionary.
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Table 12: Correlations of skewness with the business cycle - Outlier cleaning

90% Kelley 95% Kelley 99% Kelley Third moment GM Skewness

Panel a: Correlations with aggregate sales growth
Top/bottom 0.1%
Full sample 0.64 0.41 -0.06 -0.14 0.05
Pre-1984 0.49 0.27 -0.16 -0.05 0.03
Post-1984 0.86 0.78 0.42 0.08 0.62
Top/bottom 1%
Full sample 0.63 0.42 -0.04 -0.10 0.39
Pre-1984 0.50 0.30 -0.11 0.00 0.27
Post-1984 0.85 0.79 0.47 -0.51 0.82
Top/bottom 2%
Full sample 0.63 0.43 -0.05 -0.11 0.48
Pre-1984 0.51 0.31 -0.08 0.06 0.37
Post-1984 0.86 0.80 0.33 -0.37 0.83
Top/bottom 0.1% each quarter
Full sample 0.64 0.41 -0.07 -0.18 0.05
Pre-1984 0.49 0.28 -0.17 -0.38 0.02
Post-1984 0.86 0.78 0.46 -0.02 0.53
Top/bottom 1% each quarter
Full sample 0.65 0.47 0.05 -0.08 0.39
Pre-1984 0.49 0.33 -0.08 -0.22 0.29
Post-1984 0.86 0.80 0.64 0.23 0.82
Top/bottom 2% each quarter
Full sample 0.66 0.54 0.20 0.12 0.52
Pre-1984 0.52 0.39 0.06 -0.06 0.39
Post-1984 0.86 0.82 0.72 0.65 0.84

Panel b: Correlations with GDP growth
Top/bottom 0.1%
Full sample 0.52 0.32 -0.10 -0.24 0.02
Pre-1984 0.50 0.30 -0.09 -0.19 0.15
Post-1984 0.69 0.68 0.51 -0.36 0.56
Top/bottom 1%
Full sample 0.51 0.32 -0.10 -0.09 0.32
Pre-1984 0.51 0.31 -0.10 -0.01 0.36
Post-1984 0.67 0.66 0.47 -0.56 0.68
Top/bottom 2%
Full sample 0.51 0.32 -0.11 -0.08 0.40
Pre-1984 0.51 0.31 -0.10 0.09 0.42
Post-1984 0.66 0.66 0.34 -0.41 0.69
Top/bottom 0.1% each quarter
Full sample 0.54 0.34 -0.06 -0.20 0.03
Pre-1984 0.54 0.34 0.01 -0.16 0.20
Post-1984 0.69 0.68 0.47 -0.12 0.41
Top/bottom 1% each quarter
Full sample 0.55 0.39 0.03 -0.07 0.33
Pre-1984 0.55 0.39 0.05 0.02 0.39
Post-1984 0.69 0.68 0.61 0.22 0.71
Top/bottom 2% each quarter
Full sample 0.55 0.44 0.15 0.08 0.43
Pre-1984 0.55 0.44 0.15 0.10 0.45
Post-1984 0.69 0.68 0.65 0.56 0.72

The first three columns compute skewness using the Kelley measure (SK2), with different choices for α. The last column computes
the Groeneveld & Meeden (1984) skewness coefficient (SK3). The pre-1984 sample is 1962Q1-1983Q4. The post-1984 sample is
1984Q1-2022Q3.
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Table 13: Correlations of skewness with the business cycle - Cutoff rules

90% Kelley 95% Kelley 99% Kelley Third moment GM Skewness

Panel a: Correlations with aggregate sales growth
100% cutoff
Full sample 0.64 0.48 0.00 0.05 0.58
Pre-1984 0.60 0.51 0.22 0.18 0.56
Post-1984 0.74 0.57 -0.63 -0.35 0.72
50% cutoff
Full sample 0.37 0.09 -0.63 -0.50 0.28
Pre-1984 0.45 0.20 -0.46 -0.37 0.34
Post-1984 0.34 -0.13 -0.79 -0.67 0.24
25% cutoff
Full sample -0.27 -0.55 -0.76 -0.72 -0.35
Pre-1984 -0.07 -0.38 -0.71 -0.69 -0.17
Post-1984 -0.58 -0.75 -0.81 -0.78 -0.64

Panel b: Correlations with GDP growth
100% cutoff
Full sample 0.53 0.41 0.08 0.11 0.51
Pre-1984 0.56 0.44 0.17 0.16 0.53
Post-1984 0.47 0.35 -0.51 -0.31 0.50
50% cutoff
Full sample 0.36 0.16 -0.53 -0.52 0.30
Pre-1984 0.50 0.33 -0.37 -0.41 0.43
Post-1984 0.09 -0.30 -0.72 -0.66 0.05
25% cutoff
Full sample -0.11 -0.37 -0.62 -0.65 -0.19
Pre-1984 0.14 -0.13 -0.51 -0.61 0.05
Post-1984 -0.59 -0.68 -0.71 -0.67 -0.59

The first three columns compute skewness using the Kelley measure (SK2), with different choices for α. The
last column computes the Groeneveld & Meeden (1984) skewness coefficient (SK3). The pre-1984 sample is
1962Q1-1983Q4. The post-1984 sample is 1984Q1-2022Q3.
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Table 14: Descriptive statistics - Samples for correlation estimation

Mean Growth Minimum Growth Maximum Growth Observations
Full sample
Full sample 134% -100% 24,353,693% 1,145,568
Pre-1984 34% -100% 633,842% 199,064
Post-1984 155% -100% 24,353,693% 946,504
Top/bottom 0.1%
Full sample 36% -99% 12,182% 1,143,276
Pre-1984 14% -99% 12,160% 198,978
Post-1984 41% -99% 12,182% 944,298
Top/bottom 1%
Full sample 16% -82% 680% 1,122,656
Pre-1984 9% -82% 678% 197,857
Post-1984 17% -82% 680% 924,799
Top/bottom 2%
Full sample 12% -69% 303% 1,099,744
Pre-1984 8% -69% 303% 196,078
Post-1984 13% -69% 303% 903,666
Top/bottom 0.1% each quarter
Full sample 39% -100% 49,960% 1,143,031
Pre-1984 13% -100% 21,436% 198,594
Post-1984 44% -100% 49,960% 944,437
Top/bottom 1% each quarter
Full sample 17% -94% 1,639% 1,122,411
Pre-1984 8% -86% 898% 194,995
Post-1984 18% -94% 1,639% 927,416
Top/bottom 2% each quarter
Full sample 13% -86% 803% 1,099,490
Pre-1984 7% -76% 370% 191,009
Post-1984 14% -86% 803% 908,481
100% cutoff
Full sample 4% -100% 100% 1,078,962
Pre-1984 5% -100% 100% 194,198
Post-1984 4% -100% 100% 884,764
50% cutoff
Full sample 3% -50% 50% 963,423
Pre-1984 4% -50% 50% 182,132
Post-1984 3% -50% 50% 781,291
25% cutoff
Full sample 2% -25% 25% 774,776
Pre-1984 3% -25% 25% 153,089
Post-1984 2% -25% 25% 621,687
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Table 15: Correlations of skewness with the business cycle - Additional considerations

90% Kelley 95% Kelley 99% Kelley Third moment GM Skewness

Panel a: Correlations with aggregate sales growth
Log differences
Full sample 0.71 0.63 0.29 0.13 -0.00
Pre-1984 0.56 0.46 0.20 0.13 0.10
Post-1984 0.83 0.78 0.53 0.20 0.22
Log differences +
Top/bottom 2% each quarter
Full sample 0.72 0.69 0.54 0.56 0.52
Pre-1984 0.57 0.53 0.37 0.38 0.39
Post-1984 0.84 0.80 0.74 0.72 0.84
Weighted rates
Full sample 0.90 0.93 0.95 0.56 -0.00
Pre-1984 0.89 0.92 0.93 0.57 0.10
Post-1984 0.91 0.93 0.95 0.56 0.22
Weighted rates +
Top/bottom 2% each quarter
Full sample 0.89 0.92 0.94 0.90 0.01
Pre-1984 0.88 0.91 0.92 0.90 0.12
Post-1984 0.91 0.93 0.95 0.93 0.24

Panel b: Correlations with GDP growth
Log differences
Full sample 0.60 0.54 0.29 0.16 -0.09
Pre-1984 0.59 0.48 0.28 0.18 0.03
Post-1984 0.63 0.61 0.50 0.18 0.11
Log differences +
Top/bottom 2% each quarter
Full sample 0.61 0.58 0.46 0.43 0.43
Pre-1984 0.61 0.56 0.40 0.35 0.45
Post-1984 0.64 0.61 0.59 0.56 0.72
Weighted rates
Full sample 0.66 0.64 0.53 0.28 -0.09
Pre-1984 0.66 0.61 0.49 0.33 0.03
Post-1984 0.69 0.66 0.57 0.26 0.11
Weighted rates +
Top/bottom 2% each quarter
Full sample 0.68 0.67 0.62 0.55 -0.06
Pre-1984 0.70 0.68 0.59 0.55 0.09
Post-1984 0.69 0.68 0.64 0.60 0.13

The first three columns compute skewness using the Kelley measure (SK2), with different choices for α. The last column
computes the Groeneveld & Meeden (1984) skewness coefficient (SK3). The pre-1984 sample is 1962Q1-1983Q4. The post-1984
sample is 1984Q1-2022Q3.
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Table 16: Correlations of skewness with the business cycle - Full vs cleaned samples

Panel a: Correlations with aggregate sales growth
90% Kelley 95% Kelley 99% Kelley Third moment GM Skewness

Full sample 0.64 0.41 -0.07 -0.04 -0.00
Cleaned sample 0.82 0.77 0.46 0.13 0.74
Streak sample 0.76 0.73 0.53 0.41 0.77
Long sample

Panel b: Correlations with GDP growth
90% Kelley 95% Kelley 99% Kelley Third moment GM Skewness

Full sample 0.64 0.32 -0.11 -0.14 -0.09
Cleaned sample 0.82 0.57 0.32 0.01 0.51
Streak sample 0.76 0.62 0.54 0.29 0.64
Long sample

Panel c: Sample characteristics
Mean Growth Min. Growth Max. Growth Observations

Full sample 134% -100% 24,353,693% 1,145,568
Cleaned sample 13% -95% 1,782% 499,249
Streak sample 7% -95% 1,283% 151,701
Long sample

Panel d: Sample characteristics
Sales over Assets Lagged real sales Total real assets Acquisitions over assets

Full sample 0.33 479,352 4,041,760 1.2%
Cleaned sample 0.31 505,409 2,033,001 0.2%
Streak sample 0.32 688,856 2,891,703 0.1%
Long sample

In panels a and b, the first three columns compute skewness using the Kelley measure (SK2), with different choices for α. The last
column computes the Groeneveld & Meeden (1984) skewness coefficient (SK3). In panels c and d, all values are averages over all
firm-quarter observations in the respective samples. Some statistics in panel d are subject to necessary data cleaning. For computing
sales over assets, I remove all observations with negative or zero assets. For acquisitions over assets, I remove all observations with
negative or zero assets and all observations with negative acquisitions. Acquisitions over assets are computed for the current and the
three preceding quarters. Real sales and total real assets are in thousands of 2015 US dollars, using the GDP deflator. The full
sample covers 1962Q1 – 2022Q3. The cleaned, streak, and long sample each cover 1983Q3 – 2021Q4.
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Table 17: Regressions controlling for lagged growth

Sales Growth GDP Growth
Skewt 0.82 0.90 0.46 0.47 0.55 0.22

(0.09) (0.10) (0.10) (0.12) (0.18) (0.12)
Skewt−1 0.04 -0.02

(0.07) (0.10)
Skewt−2 -0.19 -0.18

(0.08) (0.10)
Skewt−3 0.00 0.07

(0.08) (0.10)
Skewt−4 -0.02 -0.00

(0.08) (0.10)
Growtht−1 0.70 0.50

(0.14) (0.19)
Growtht−2 -0.27 0.05

(0.08) (0.07)
Growtht−3 -0.01 0.22

(0.09) (0.17)
Growtht−4 -0.04 -0.30

(0.06) (0.16)
Constant -0.78 -0.63 -0.39 0.18 0.25 0.14

(0.20) (0.21) (0.14) (0.47) (0.29) (0.17)
R2 0.68 0.69 0.79 0.35 0.37 0.59

Skewness is estimated using the 90% Kelley measure and the cleaned sample.
All data is standardized. The sample period is 1984Q2 – 2021Q4. Standard
errors are Newey-West. Bold font indicates statistical significance at the 5%
level. R2 is adjusted for the number of regressors.
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Table 18: Growth vs Skewness at different levels of aggregation

Sales Growth GDP Growth
(1) (2) (3) (4) (5) (6)

Firm 0.82 0.72 0.66 0.65
(0.10) (0.14) (0.15) (0.20)

NAICS 2 0.01 0.21 -0.12 0.32
(0.06) (0.10) (0.11) (0.18)

NAICS 3 0.08 -0.18
(0.11) (0.16)

NAICS 4 -0.23 -0.21
(0.09) (0.12)

NAICS 5 0.09 -0.03
(0.05) (0.12)

Firm - NAICS 2 0.40 0.39
(0.11) (0.10)

Constant -0.77 -0.68 -0.01 0.13 0.14 0.62
(0.21) (0.24) (0.24) (0.32) (0.34) (0.22)

R2 0.67 0.71 0.15 0.35 0.38 0.14
Skewness is estimated using the 90% Kelley measure and the cleaned sample. All

data is standardized. The sample period is 1984Q2 – 2021Q4. Standard errors
are Newey-West. Bold font indicates statistical significance at the 5% level. R2 is
adjusted for the number of regressors.

Table 19: Skewness vs Dispersion

Sales Growth GDP Growth
(1) (2) (3) (4) (5) (6)

Dispersion 0.42 -0.04 -0.03 0.44 0.17 0.22
(0.09) (0.09) (0.11) (0.13) (0.16) (0.14)

Skewness 0.84 0.86 0.50 0.34
(0.12) (0.14) (0.19) (0.15)

Constant -1.31 -0.63 -0.69 -0.81 -0.41 -0.31
(0.45) (0.29) (0.38) (0.60) (0.57) (0.61)

R2 0.17 0.68 0.64 0.19 0.37 0.30
Dispersion is measured as the difference between the 90th and the 10th

percentile of sales growth rate outcomes in a given quarter. Skewness is
measured as the 90% Kelley skewness. All variables are standardized. All
regressions use the cleaned sample. The sample period is 1984Q2–2021Q4,
except for columns (3) and (6), which remove the Covid period. The sample
period is then 1984Q2–2019Q4. R-squared values are adjusted for the number
of regressors. All standard errors are Newey-West. Bold font indicates
statistical significance at the 5% level.
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Table 20: Aggregate Activity vs Cross-Sectional Quantiles

Growth Rates Log Differences
(1) (2) (3) (4) (5) (6)

Q0.9–Q0.5 0.28 0.45
(0.04) (0.05)

Q0.5–Q0.1 -0.55 -0.42
(0.12) (0.07)

Q0.9 0.11 0.18 0.20 0.30
(0.03) (0.03) (0.04) (0.03)

Q0.5 0.52 0.44
(0.16) (0.14)

Q0.1 0.22 0.40 0.16 0.26
(0.06) (0.05) (0.03) (0.03)

Constant 0.07 0.03 0.06 0.02 -0.00 -0.00
(0.03) (0.02) (0.02) (0.02) (0.02) (0.02)

R2 0.59 0.83 0.80 0.67 0.85 0.83
The left columns use year-over-year real sales growth as the dependent

variable, while the right columns approximate growth rates using year-over-
year log differences of real sales. All regressions use the cleaned sample.
The sample period is 1984Q2–2021Q4. R-squared values are adjusted for
the number of regressors. All standard errors are Newey-West. Bold font
indicates statistical significance at the 5% level.
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Table 21: Data for local projections

Variable Transformation from raw data Data source
Real GDP Log level FRED (GDPC1)
GDP Deflator Log level FRED (GDPDEF)
Real oil price Quarterly average of monthly data, deflated FRED (WPU0561 & GDPDEF)
GDP per capita Real GDP (’rgdp’) per population (’civpop’) Ramey (2016) TFP data
Labor productivity Real GDP (’rgdp’) per hours worked (’tothours’) Ramey (2016) TFP data
Shadow rate Quarterly average of monthly data Atlanta Fed*
Stock prices Shiller stock prices divided by GDP deflator Ramey (2016) & FRED
Stock prices per capita Stock prices per population (’civpop’) Ramey (2016)
VXO Quarterly average of daily data FRED (VXOCLS)
Uncertainty Index Log level of Jurado et al. (2015) index Lagerborg et al. (2023)
Consumer Expectations Log level Lagerborg et al. (2023)
Monetary shock Quarterly sum of monthly data Fed Board**
Oil shock Quarterly average of monthly data Baumeister***
Credit shock Quarterly average of monthly data Favara et al. (2016)†
Uncertainty shock Quarterly average of monthly ’maxG’ shock Ludvigson et al. (2021)
Sentiment shock Quarterly average of monthly data Lagerborg et al. (2023)‡
TFP News Shock Level of Ben Zeev & Khan (2015) shock Ramey (2016) TFP data
Micro skewness Own construction based on streak sample -
Sales growth Own construction based on streak sample -

(*) The shadow rate data is available at: https://www.atlantafed.org/cqer/research/wu-xia-shadow-federal-funds-rate.
(**) The Bu et al. (2021) monetary shocks are from https://www.federalreserve.gov/econres/feds/
a-unified-measure-of-fed-monetary-policy-shocks.htm. (***) The updated shock series of Baumeister & Hamilton
(2019) is available at https://sites.google.com/site/cjsbaumeister/datasets?authuser=0. (†) The credit shock is constructed
by replicating the eight-variable Gilchrist & Zakraǰsek (2012) recursive VAR (Section IV.B) for the sample 1973Q1 – 2019Q4. (‡)
The sentiment shock is extracted from the author’s proxy SVAR estimated from 1965:1 until 2018:11. The instrument is the
number of fatalities (larger than or equal to 7) excluding the 2017 Las Vegas shooting, which Lagerborg et al. (2023) show to be
stronger for this sample period than their baseline instrument.

Table 22: Regression of idiosyncratic shocks on macro vari-
ables

Variable Coef. SE Variable Coef. SE
Sales 0.05** 0.02 FFR -0.06 0.04
Skew -0.95 1.13 10yr TY 0.10** 0.05
GDP -0.06 0.05 EBP -0.11 0.08
Inflation 0.14 0.09 Stocks -0.00 0.00
Productivity 0.04 0.03 ICE 0.00 0.00
Oil -0.00 0.00 Constant -0.50** 0.21

Standard errors are Newey-West. Number of observations is 100 quar-
ters. Adjusted R2: 11.3%. (**) indicates statistical significance at the
5% level. All predictors are lagged by one quarter. All variables in yoy
growth rates except 10yr TY, FFR, and EBP, which are in levels.
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Figure 27: Marriott International: Sales Growth Responses to Aggregate Shocks

Note: Blue shaded areas are 90% confidence bands, based on Newey-West standard errors.
Shock magnitudes are normalized to be one standard deviation. The signs of the sentiment
and TFP shocks are reversed to be contractionary.
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Figure 28: Caterpillar: Sales Growth Responses to Aggregate Shocks

Note: Blue shaded areas are 90% confidence bands, based on Newey-West standard errors.
Shock magnitudes are normalized to be one standard deviation. The signs of the sentiment
and TFP shocks are reversed to be contractionary.
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Figure 29: IBM: Sales Growth Responses to Aggregate Shocks

Note: Blue shaded areas are 90% confidence bands, based on Newey-West standard errors.
Shock magnitudes are normalized to be one standard deviation. The signs of the sentiment
and TFP shocks are reversed to be contractionary.
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Figure 30: Walt Disney: Sales Growth Responses to Aggregate Shocks

Note: Blue shaded areas are 90% confidence bands, based on Newey-West standard errors.
Shock magnitudes are normalized to be one standard deviation. The signs of the sentiment
and TFP shocks are reversed to be contractionary.
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Figure 31: Sales Growth Responses to Oil Supply Shock

Note: Blue impulse responses refer to oil companies, while green are non-oil companies. Shock
magnitudes are normalized to be one standard deviation.

Figure 32: Robustness: Comovement of bottom-up skewness and growth after aggregate shocks
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Figure 33: Top 10% vs middle 80% firms: Bottom-up skewness and growth responses

Figure 34: Top 30% vs bottom 70% firms: Bottom-up skewness and growth responses
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Figure 35: Top 10% vs bottom 90% of firms: Skewness index responses

Note: The red lines show the impulse response of the skewness index
for the top 10% of firms by size (real sales) and the blue lines show the
impulse responses of the skewness index for the rest of firms. The 90%
confidence intervals are computed using Newey-West standard errors.
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Figure 36: Contributions of growth and size bins to aggregate growth decline - All shocks

Note: Largest firms are the top 10% of the size distribution, which averages real
sales over time for each firm. The contributions are re-scaled such that the bars
add up to -100%.
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