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Introduction

• Question: How should we design climate policies in a global,
interconnected economy?

• Climate externality:
• Domestic dimension: firms do not internalize damages from energy use.

• International dimension: emissions in Shenzen, China, may create
damages in Utah, US.

• Externality is global ⇒ coordination is needed (e.g. Paris Agreement
2015).

• What happens if there is lack of coordination (e.g. US, China)?

• Optimal unilateral policies?

• Large emitters/large participants in international capital markets.
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What I do - preview of results

• Cooperative policy: global Pigouvian carbon tax.

• Beyond cooperation: Large country (Home) that faces a passive RoW
(Foreign)

1 Large emitter.

2 Intertemporal trade: Large borrower/saver ⇒ market power.

3 [One good economy ⇒ will not address tariff policy (e.g. EU CBAM)]

• Optimal unilateral policies

1 Capital controls τ b
t (intertemporal terms of trade)

• If Home grows faster than Foreign ⇒ use a tax on borrowing, τbt > 0.

• If Home grows slower than Foreign ⇒ use a tax on savings, τbt < 0.

2 Domestic carbon tax τt: above/below Home’s damages

• Tax more carbon if Home is a net importer of goods.

• Tax less carbon if Home is a net exporter of goods.
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Deterministic multiple-country economy without capital

• Based on the closed economy of Golosov et al. (2014).

• Two sectors in country l = 1, .., N : final good and dirty energy.

Y l
t︸︷︷︸

net output

=

country-specific damages, Dl
S > 0︷ ︸︸ ︷

(1−Dl(St)) Al
tF

l(nl
t, E

l
t)︸ ︷︷ ︸

gross output, Ŷ l
t

, El
t = zltf

l(nl
E,t)

• One unit of labor allocated between two sectors: nl
t + nl

E,t = 1.

• Climate variable: stock of emissions St

St = H(St−1,

N∑
l=1

El
t) HS > 0, HE > 0

• International dimension: Ek
t ↑⇒ Dl(St) ↑, l ̸= k.

• ⇒ St acts as a durable, public “bad.”
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Global planner

• Pareto weights ηl > 0,
∑N

l=1 η
l = 1.

• Choose {clt, nl
t, E

l
t, St}∀l,t to maximize

N∑
l=1

ηl
∞∑
t=0

βtul(clt) (1)

subject to

N∑
l

clt =

N∑
l=0

(1−Dl(St))A
l
tF

l(nl
t, E

l
t) (≡ Yt),∀t (2)

El
t = zltf

l(1− nl
t),∀l, t (3)

St = H(St−1,

N∑
l

El
t),∀t (4)

with S−1 given, and clt ≥ 0, nl
t ∈ [0, 1],∀l, t.



Optimal cooperative policy
• Consumption efficiency:

ul
c,t

uk
c,t

=
ηk

ηl
= constant

power utility⇒ clt = θl · Yt (constant share)

• Optimal intersectoral allocation of nl
t:

(1−Dl
t)A

l
tF

l
n,t︸ ︷︷ ︸

MP
final
n

= µ̃l
t︸︷︷︸

shadow value of El
t

× zltf
l
n(1− nl

t)︸ ︷︷ ︸
MP

energy
n

, ∀l

• Shadow value of El
t: µ̃

l
t = (1−Dl

t)A
l
tF

l
E,t︸ ︷︷ ︸

MP
final
E

in l

−ξ̃globalt HE,t︸ ︷︷ ︸
global externality

, ∀l.

• Shadow cost of St:

ξ̃globalt =

N∑
l=1

Dl
S,tŶ

l
t︸ ︷︷ ︸

current global marginal damages

+ β
uc,t+1

uc,t
HS,t+1ξ̃

global
t+1︸ ︷︷ ︸

future global marginal damages
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Market economy: “Business as Usual” (BAU)
• Equalize IMRS across l = 1, ..., N :

pt = β
ul
c,t+1

ul
c,t

∀l.

⇒ Consumption constant share of global output.

• Optimal intersectoral allocation of labor in l:

F l
n(n

l
t, E

l
t)

F l
E(n

l
t, E

l
t)︸ ︷︷ ︸

MRTSFinal
n,E

= zltf
l
n(1− nl

t)︸ ︷︷ ︸
MP energy

n

∀l

• Firms ignore the cost of emissions ⇒ too much labor in the energy
sector!

• Pigouvian tax: global unit tax τglobalt ≡ ξ̃globalt ·HE,t:

πl,tax
t =

[
plE,t − τglobalt

]
zltf(n

l
E,t)− wl

tn
l
E,t
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Decentralization of Pareto policy: global carbon tax
• Parametric assumptions: multiple-country extension of Golosov et al. (2014)

1 Permanent and transitory emissions (ϕL, ϕ0, ϕ):

St = xt + yt

xt = xt−1 + ϕL

N∑
l=1

El
t, yt = (1− ϕ)yt−1 + (1− ϕL)ϕ0

N∑
l=1

El
t

2 Exponential country-specific damages:

Dl(St) = 1− exp
(
−γl(St − S̄)

)
,

3 Power utility: ul(c) = (c1−ρ − 1)/(1− ρ), ∀l.

• Global carbon tax:

τglobal
t

Yt
=

∞∑
i=0

βi

(
Yt+i

Yt

)1−ρ

(1− di)︸ ︷︷ ︸
depreciation of emissions

N∑
l=1

γlslt+i,

where slt ≡
Y l
t

Yt
: output share of l in global output,

1− di ≡ ϕL + (1− ϕL)ϕ0(1− ϕ)i.

• ∑N
l=1 γ

lslt+i: output-weighted global marginal damages.
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Beyond cooperation

• Country-specific policymaker: maximizes utility of household in l.

• Large emitter ⇒ understands the effect of energy use on St and
damages.

• Large participant in international capital markets.

• ⇒ Understands how equilibrium interest rates are formed.

• ⇒ Tries to affect prices to maximize domestic welfare.

• Incentives for price manipulation intertwined with carbon taxation.



Prelude: Large emitter but price-taker in international markets
• Given Ej

t , j ̸= l and prices pt, the policymaker in l maximizes

∞∑
t=0

βtul(clt) (5)

subject to

clt + ptb
l
t+1 = (1−Dl(St))A

l
tF

l(nl
t, E

l
t) + blt

El
t = zltf

l(1− nl
t)

St = H(St−1, E
l
t +

∑
j ̸=l

Ej
t )

• Country-specific carbon tax:

τ l
t

Yt
=

∞∑
i=0

βi

(
Yt+i

Yt

)1−ρ

(1− di)γ
lslt+i

• The policymaker in l cares only for the marginal damages in l.
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Dynamic monopolist

• Two countries: Home and Foreign.

• Follow the protocol of Costinot et al. (2014).

• Home (country 1): large emitter/large participant in international
capital markets ⇒ understands how pt is formed (market power).

• Foreign (country 2): passive, ”business as usual” (BAU) policy.

• World interest rates: pt = β
u2
c,t+1

u2
c,t

, Rt ≡ 1/pt ⇒ qt = βt u
2
c,t

u2
c,0

.

• Zero initial net foreign asset position, b10 = b20 = 0.

• Two instruments to decentralize the allocation:

1 A domestic carbon tax τt on energy producers to affect the intersectoral
allocation of labor.

2 A tax on borrowing/saving τ b
t to manipulate world interest rates ⇒

Capital controls!
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Problem of H
• Policymaker in H chooses {c1t ≥ 0, n1

t ∈ [0, 1], E1
t , c

2
t ≥ 0, St} to max

∞∑
t=0

βtu1(c1t )

subject to

c1t + c2t = (1−D1(St))A
1
tF

1(n1
t , E

1
t ) + (1−D2(St))Ŷ

2
t

E1
t = z1t f

1(1− n1
t )

St = H(St−1, E
1
t + E2

t )
∞∑
t=0

βtu2
c(c

2
t )︸ ︷︷ ︸

qt

[
c2t − (1−D2(St))Ŷ

2
t

]
= 0, (IBC of F)

• (E2
t , Ŷ

2
t ) functions of (A

2
t , z

2
t ) ⇒ outside of control of H.

• Prices qt = βt u2
c,t

u2
c,0

: controlled by H subject to IBC.

• Setup similar to a monopolist that faces a competitive fringe.



Consumption allocation

• Optimal choice of c2t (Φ multiplier on IBC of F):

u1
c,t︸︷︷︸

MC of increasing c2t

= Φ

MB of increasing c2t︷ ︸︸ ︷[
u2
c,t − u2

cc,t ·(c1t − Y 1
t )︸ ︷︷ ︸

net buyer (+)/seller (-)

]

• MC: reduction of Home consumption (u1
c,t).

• MB of increasing c2t :

1 Mechanical effect: relax the home budget (first term in RHS)

2 c2t ↑⇒ u2
c,t ↓⇒ qt ↓: prices fall.

• A reduction in qt is:
• Beneficial if H is a net buyer of goods, c1t > Y 1

t (nx1
t < 0).

• Harmful if H is a net seller of goods, c1t < Y 1
t (nx1

t > 0).
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Consumption shares, price wedge and τ bt
• Price wedge: χt ≡

u1
c,t

Φu2
c,t

− 1

• Ratio of marginal utilities:

u1
c,t

u2
c,t

= Φ(1 + χt), χt = ϵ2cc,t
c1t − Y 1

t

c2t

where ϵ2cc = −u2
cc

u2
c
c2: elasticity of MU of F.

• Φt ≡ Φ(1 + χt): time-varying inverse “Pareto” weight.

• Power utility: θ1t ≡ c1t/Yt, s
1
t ≡ Y 1

t /Yt.

(
θ1t

1− θ1t

)−ρ

= Φ
(
1 + ρ

θ1t − s1t
1− θ1t

)
⇒ time-varying consumption share (due to market power), θ1t = θ1(s1t )!

• ∂θ1
t

∂s1t
> 0, ∂χt

∂s1t
< 0.
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Consumption share θ and price wedge χ
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• ρ = 2,Φ = 0.7141.

• At the Pareto-optimal allocation θ is constant!



Tax on borrowing/saving τ bt+1
• Wedge in IMRS as long as χt varies!

pt = β
u2
c,t+1

u2
c,t

=
1 + χt

1 + χt+1
· β

u1
c,t+1

u1
c,t

• Decentralization with τ b
t+1:

pt = (1 + τ b
t+1)β

u1
c,t+1

u1
c,t

⇒ τ b
t+1 ≡ χt − χt+1

1 + χt+1

• Power utility:

τ b
t+1 ≃ ln(1 + τ b

t+1) = ρ ·
[
ln

θ1t+1

θ1t
− ln

1− θ1t+1

1− θ1t

]
• s1t+1 > s1t ⇒ Y 1

t+1

Y 1
t

>
Y 2
t+1

Y 2
t

⇒ θ1t+1 > θ1t ⇒ τ b
t+1 > 0 ⇒ tax on borrowing.

• s1t+1 < s1t ⇒ Y 1
t+1

Y 1
t

<
Y 2
t+1

Y 2
t

⇒ θ1t+1 < θ1t ⇒ τ b
t+1 < 0 ⇒ tax on saving.

• s1t+1 = s1t ⇒ θ1t+1 = θ1t ⇒ τ b
t+1 = 0. Same at the BGP.
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Indicative path of τ bt
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• ρ = 2,Φ = 0.7141.
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χt−χt+1

1+χt+1
.



Social cost of carbon and carbon taxes τMt ≡ ξ̃Mt ·HE,t

• Shadow cost of emissions

ξ̃Mt = D1
S,tŶ

1
t︸ ︷︷ ︸

damages of H

+
χt

1 + χt
D2

S,tŶ
2
t︸ ︷︷ ︸

price wedge (+/-) × damages of F

+ β
u1
c,t+1

u1
c,t

̸=pt

ξ̃Mt+1HS,t+1

• Damages of F enter the shadow cost of emissions for H!
• χt > 0 ⇒ H is net buyer (nxt < 0) ⇒ foreign damages are costly to H ⇒

cost of emissions ↑
• χt < 0 ⇒ H is net seller (nxt > 0) ⇒ foreign damages are beneficial to

H ⇒ cost of emissions ↓
• If D1

S,t = 0, ξ̃Mt ̸= 0 ⇒ carbon tax/subsidy even for zero H damages!

• Parametric example:

τM
t

Yt
=

∞∑
i=0

βi

(
θ1t+i

θ1t

)−ρ (
Yt+i

Yt

)1−ρ

(1− di)
[
γ1s1t+i + γ2(1− s1t+i)

χt+i

1 + χt+i

]
• BGP:

τM
t
Yt

= (γ1s1 + γ2(1− s1) χ
1+χ

)
∑∞

i=0 β̃
i(1− di), β̃ ≡ β(1 + g)1−ρ.
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Future steps and concluding remarks

• How important are the results on capital controls and carbon taxes
quantitatively?

• What if the policymaker in H were “altruistic” and maximized the
weighted utility of H and F?

• Qualitatively, similar mechanisms would emerge.

• Carbon tax and capital control wars?

• H chooses (τ1t , τ
b,1
t ), F chooses (τ2t , τ

b,2
t ) and play Nash against each

other.
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THANK YOU!
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