Optimal Climate Policy in a Global Economy

Anastasios G. Karantounias

University of Surrey

Qatar Centre for Global Banking & Finance Annual Conference

July 2024

• Question: How should we design climate policies in a global, *interconnected* economy?

- Question: How should we design climate policies in a global, *interconnected* economy?
- Climate externality:
 - Domestic dimension: firms do not *internalize* damages from energy use.

• International dimension: emissions in *Shenzen, China,* may create damages in *Utah, US.*

- Question: How should we design climate policies in a global, *interconnected* economy?
- Climate externality:
 - Domestic dimension: firms do not *internalize* damages from energy use.

- International dimension: emissions in *Shenzen, China,* may create damages in *Utah, US.*
- Externality is $global \Rightarrow$ coordination is needed (e.g. Paris Agreement 2015).

- Question: How should we design climate policies in a global, *interconnected* economy?
- Climate externality:
 - Domestic dimension: firms do not *internalize* damages from energy use.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

- International dimension: emissions in *Shenzen, China,* may create damages in *Utah, US.*
- Externality is $global \Rightarrow$ coordination is needed (e.g. Paris Agreement 2015).
- What happens if there is *lack* of coordination (e.g. US, China)?

- Question: How should we design climate policies in a global, *interconnected* economy?
- Climate externality:
 - Domestic dimension: firms do not *internalize* damages from energy use.
 - International dimension: emissions in *Shenzen, China,* may create damages in *Utah, US.*
- Externality is $global \Rightarrow$ coordination is needed (e.g. Paris Agreement 2015).
- What happens if there is *lack* of coordination (e.g. US, China)?
- Optimal unilateral policies?
- Large emitters/large participants in international capital markets.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Emissions per country

Annual CO₂ emissions

Carbon dioxide (CO₂) emissions from fossil fuels and industry¹. Land-use change is not included.

OurWorldInData.org/co2-and-greenhouse-gas-emissions | CC BY

Emissions share per country

Share of global CO₂ emissions

Carbon dioxide (CO₂) emissions from fossil fuels and industry¹. Land-use change is not included.

Data source: Global Carbon Budget (2023)

OurWorldInData.org/co2-and-greenhouse-gas-emissions | CC BY

Our World in Data

• Cooperative policy: global Pigouvian carbon tax.

(ロ)、

- Cooperative policy: global Pigouvian carbon tax.
- Beyond cooperation: *Large* country (Home) that faces a *passive* RoW (Foreign)
 - 1 Large emitter.
 - **2** Intertemporal trade: Large *borrower/saver* \Rightarrow *market power*.
 - **3** [One good economy \Rightarrow will not address tariff policy (e.g. EU CBAM)]

- Cooperative policy: global Pigouvian carbon tax.
- Beyond cooperation: *Large* country (Home) that faces a *passive* RoW (Foreign)
 - 1 Large emitter.
 - **2** Intertemporal trade: Large *borrower/saver* \Rightarrow *market power*.
 - **3** [One good economy \Rightarrow will not address tariff policy (e.g. EU CBAM)]
- Optimal unilateral policies
 - 1 Capital controls τ_t^b (intertemporal terms of trade)
 - If Home grows faster than Foreign \Rightarrow use a tax on borrowing, $\tau_t^b > 0$.

• If Home grows *slower* than Foreign \Rightarrow use a tax on savings, $\tau_t^b < 0$.

- Cooperative policy: global Pigouvian carbon tax.
- Beyond cooperation: *Large* country (Home) that faces a *passive* RoW (Foreign)
 - 1 Large emitter.
 - **2** Intertemporal trade: Large *borrower/saver* \Rightarrow *market power*.
 - **3** [One good economy \Rightarrow will not address tariff policy (e.g. EU CBAM)]
- Optimal unilateral policies
 - 1 Capital controls τ_t^b (intertemporal terms of trade)
 - If Home grows *faster* than Foreign \Rightarrow use a tax on borrowing, $\tau_t^b > 0$.

- If Home grows slower than Foreign \Rightarrow use a tax on savings, $\tau_t^b < 0$.
- **2** Domestic carbon tax τ_t : above/below Home's damages
 - Tax more carbon if Home is a net *importer* of goods.
 - Tax *less* carbon if Home is a net *exporter* of goods.

Deterministic multiple-country economy without capital

• Based on the *closed* economy of Golosov et al. (2014).

Deterministic multiple-country economy without capital

- Based on the *closed* economy of Golosov et al. (2014).
- Two sectors in country l = 1, ..., N: final good and dirty energy.

うして ふゆ く は く は く む く し く

• One unit of labor allocated between two sectors: $n_t^l + n_{E,t}^l = 1$.

Deterministic multiple-country economy without capital

- Based on the *closed* economy of Golosov et al. (2014).
- Two sectors in country l = 1, ..., N: final good and dirty energy.

$$\underbrace{Y_t^l}_{\text{net output}} = \underbrace{(1 - D^l(S_t))}_{\text{gross output}, \hat{Y}_t^l} \underbrace{A_t^l F^l(n_t^l, E_t^l)}_{\text{gross output}, \hat{Y}_t^l}, \quad E_t^l = z_t^l f^l(n_{E,t}^l)$$

- One unit of labor allocated between two sectors: $n_t^l + n_{E,t}^l = 1$.
- Climate variable: stock of emissions S_t

$$S_t = H(S_{t-1}, \sum_{l=1}^{N} E_t^l) \quad H_S > 0, H_E > 0$$

- International dimension: $E_t^k \uparrow \Rightarrow D^l(S_t) \uparrow, l \neq k$.
- $\Rightarrow S_t$ acts as a durable, public "bad."

Global planner

- Pareto weights $\eta^l > 0, \sum_{l=1}^N \eta^l = 1.$
- Choose $\{c_t^l, n_t^l, E_t^l, S_t\}_{\forall l, t}$ to maximize

$$\sum_{l=1}^{N} \eta^{l} \sum_{t=0}^{\infty} \beta^{t} u^{l}(c_{t}^{l}) \tag{1}$$

subject to

$$\sum_{l}^{N} c_{t}^{l} = \sum_{l=0}^{N} (1 - D^{l}(S_{t})) A_{t}^{l} F^{l}(n_{t}^{l}, E_{t}^{l}) \quad (\equiv Y_{t}), \forall t$$
(2)

$$E_t^l = z_t^l f^l (1 - n_t^l), \forall l, t \tag{3}$$

$$S_t = H(S_{t-1}, \sum_{l}^{N} E_t^l), \forall t$$

$$\tag{4}$$

with S_{-1} given, and $c_t^l \ge 0, n_t^l \in [0, 1], \forall l, t$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

• Consumption efficiency:

$$\frac{u_{c,t}^{l}}{u_{c,t}^{k}} = \frac{\eta^{k}}{\eta^{l}} = \text{constant} \xrightarrow{\text{power utility}} c_{t}^{l} = \theta^{l} \cdot Y_{t} \quad (\text{constant share})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Consumption efficiency:

$$\frac{u_{c,t}^l}{u_{c,t}^k} = \frac{\eta^k}{\eta^l} = \text{constant} \stackrel{\text{power utility}}{\Rightarrow} c_t^l = \theta^l \cdot Y_t \quad (\text{constant share})$$

• Optimal *intersectoral* allocation of n_t^l :

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Consumption efficiency:

$$\frac{u_{c,t}^{l}}{u_{c,t}^{k}} = \frac{\eta^{k}}{\eta^{l}} = \text{constant} \xrightarrow{\text{power utility}} c_{t}^{l} = \theta^{l} \cdot Y_{t} \quad (\text{constant share})$$

• Optimal *intersectoral* allocation of n_t^l :

• Consumption efficiency:

$$\frac{u_{c,t}^{l}}{u_{c,t}^{k}} = \frac{\eta^{k}}{\eta^{l}} = \text{constant} \xrightarrow{\text{power utility}} c_{t}^{l} = \theta^{l} \cdot Y_{t} \quad (\text{constant share})$$

• Optimal *intersectoral* allocation of n_t^l :

• Shadow cost of S_t :

$$\tilde{\xi}_{t}^{global} = \underbrace{\sum_{l=1}^{N} D_{S,t}^{l} \hat{Y}_{t}^{l}}_{\text{current global marginal damages}} + \underbrace{\beta \frac{u_{c,t+1}}{u_{c,t}} H_{S,t+1} \tilde{\xi}_{t+1}^{global}}_{\text{future global marginal damages}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Market economy: "Business as Usual" (BAU)

• Equalize IMRS across l = 1, ..., N:

$$p_t = \beta \frac{u_{c,t+1}^l}{u_{c,t}^l} \forall l.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

 \Rightarrow Consumption *constant* share of global output.

Market economy: "Business as Usual" (BAU)

• Equalize IMRS across l = 1, ..., N:

$$p_t = \beta \frac{u_{c,t+1}^l}{u_{c,t}^l} \forall l$$

 \Rightarrow Consumption *constant* share of global output.

• Optimal intersectoral allocation of labor in l:

$$\frac{\frac{F_n^l(n_t^l, E_t^l)}{F_E^l(n_t^l, E_t^l)}}{MRTS_{n,E}^{Final}} = \underbrace{z_t^l f_n^l(1 - n_t^l)}_{MP_n^{energy}} \forall l$$

• Firms ignore the cost of emissions ⇒ too much labor in the energy sector!

Market economy: "Business as Usual" (BAU)

• Equalize IMRS across l = 1, ..., N:

$$p_t = \beta \frac{u_{c,t+1}^l}{u_{c,t}^l} \forall l$$

 \Rightarrow Consumption *constant* share of global output.

• Optimal intersectoral allocation of labor in l:

$$\frac{\frac{F_n^l(n_t^l, E_t^l)}{F_E^l(n_t^l, E_t^l)}}{MRTS_{n,E}^{Final}} = \underbrace{z_t^l f_n^l(1 - n_t^l)}_{MP_n^{energy}} \forall l$$

- Firms ignore the cost of emissions \Rightarrow too much labor in the energy sector!
- Pigouvian tax: global unit tax $\tau_t^{\text{global}} \equiv \tilde{\xi}_t^{global} \cdot H_{E,t}$:

$$\pi_t^{l,\text{tax}} = \left[p_{E,t}^l - \tau_t^{global} \right] z_t^l f(n_{E,t}^l) - w_t^l n_{E,t}^l$$

Decentralization of Pareto policy: global carbon tax

Parametric assumptions: multiple-country extension of Golosov et al. (2014)
 Permanent and transitory emissions (φ_L, φ₀, φ):

$$S_t = x_t + y_t$$

$$x_t = x_{t-1} + \phi_L \sum_{l=1}^N E_t^l, \qquad y_t = (1 - \phi)y_{t-1} + (1 - \phi_L)\phi_0 \sum_{l=1}^N E_t^l$$

2 Exponential country-specific damages:

$$D^{l}(S_{t}) = 1 - \exp\left(-\gamma^{l}(S_{t} - \bar{S})\right),$$
3 Power utility: $u^{l}(c) = (c^{1-\rho} - 1)/(1-\rho), \forall l.$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Decentralization of Pareto policy: global carbon tax

Parametric assumptions: multiple-country extension of Golosov et al. (2014)
 Permanent and transitory emissions (φ_L, φ₀, φ):

$$S_{t} = x_{t} + y_{t}$$
$$x_{t} = x_{t-1} + \phi_{L} \sum_{l=1}^{N} E_{t}^{l}, \qquad y_{t} = (1 - \phi)y_{t-1} + (1 - \phi_{L})\phi_{0} \sum_{l=1}^{N} E_{t}^{l}$$

2 Exponential country-specific damages:

$$D^{l}(S_{t}) = 1 - \exp\left(-\frac{\gamma^{l}}{S_{t}}(S_{t} - \bar{S})\right),$$

8 Power utility: $u^{l}(c) = (c^{1-\rho} - 1)/(1-\rho), \forall l.$

• Global carbon tax:

$$\frac{\tau_t^{\text{global}}}{Y_t} = \sum_{i=0}^{\infty} \beta^i \left(\frac{Y_{t+i}}{Y_t}\right)^{1-\rho} \underbrace{(1-d_i)}_{\text{depreciation of emissions}} \sum_{l=1}^N \gamma^l s_{t+i}^l,$$

where $s_t^l \equiv \frac{Y_t^l}{Y_t}$: output share of l in global output, $1 - d_i \equiv \phi_L + (1 - \phi_L)\phi_0(1 - \phi)^i$.

• $\sum_{l=1}^{N} \gamma^{l} s_{t+i}^{l}$: output-weighted global marginal damages.

Beyond cooperation

- Country-specific policymaker: maximizes utility of household in *l*.
- Large emitter \Rightarrow understands the effect of energy use on S_t and damages.
- *Large* participant in international capital markets.
- \Rightarrow Understands how equilibrium interest rates are formed.
- \Rightarrow Tries to *affect* prices to maximize domestic welfare.
- Incentives for price manipulation *intertwined* with carbon taxation.

・ロト・日本・モート モー うへで

Prelude: Large emitter <u>but</u> price-taker in international markets

• Given E_t^j , $j \neq l$ and prices p_t , the policymaker in l maximizes

$$\sum_{t=0}^{\infty} \beta^t u^l(c_t^l) \tag{5}$$

subject to

$$c_{t}^{l} + p_{t}b_{t+1}^{l} = (1 - D^{l}(S_{t}))A_{t}^{l}F^{l}(n_{t}^{l}, E_{t}^{l}) + b_{t}^{l}$$

$$E_{t}^{l} = z_{t}^{l}f^{l}(1 - n_{t}^{l})$$

$$S_{t} = H(S_{t-1}, E_{t}^{l} + \sum_{j \neq l} E_{t}^{j})$$

Prelude: Large emitter <u>but</u> price-taker in international markets

• Given E_t^j , $j \neq l$ and prices p_t , the policymaker in l maximizes

$$\sum_{t=0}^{\infty} \beta^t u^l(c_t^l) \tag{5}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

subject to

$$c_{t}^{l} + p_{t}b_{t+1}^{l} = (1 - D^{l}(S_{t}))A_{t}^{l}F^{l}(n_{t}^{l}, E_{t}^{l}) + b_{t}^{l}$$

$$E_{t}^{l} = z_{t}^{l}f^{l}(1 - n_{t}^{l})$$

$$S_{t} = H(S_{t-1}, E_{t}^{l} + \sum_{j \neq l} E_{t}^{j})$$

• Country-specific carbon tax:

$$\frac{\tau_t^l}{Y_t} = \sum_{i=0}^{\infty} \beta^i \left(\frac{Y_{t+i}}{Y_t}\right)^{1-\rho} (1-d_i) \gamma^l s_{t+i}^l$$

• The policymaker in *l* cares *only* for the marginal damages in *l*.

• *Two* countries: Home and Foreign.

- *Two* countries: Home and Foreign.
- Follow the protocol of Costinot et al. (2014).
- Home (country 1): large emitter/large participant in international capital markets \Rightarrow understands how p_t is formed (market power).

- *Two* countries: Home and Foreign.
- Follow the protocol of Costinot et al. (2014).
- Home (country 1): large emitter/large participant in international capital markets \Rightarrow understands how p_t is formed (market power).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Foreign (country 2): passive, "business as usual" (BAU) policy.

- *Two* countries: Home and Foreign.
- Follow the protocol of Costinot et al. (2014).
- Home (country 1): large emitter/large participant in international capital markets \Rightarrow understands how p_t is formed (market power).

うして ふゆ く は く は く む く し く

• Foreign (country 2): passive, "business as usual" (BAU) policy.

• World interest rates:
$$p_t = \beta \frac{u_{c,t+1}^2}{u_{c,t}^2}, R_t \equiv 1/p_t \Rightarrow q_t = \beta t \frac{u_{c,t}^2}{u_{c,0}^2}$$

• Zero initial net foreign asset position, $b_0^1 = b_0^2 = 0$.

- *Two* countries: Home and Foreign.
- Follow the protocol of Costinot et al. (2014).
- Home (country 1): large emitter/large participant in international capital markets \Rightarrow understands how p_t is formed (market power).
- Foreign (country 2): passive, "business as usual" (BAU) policy.

• World interest rates:
$$p_t = \beta \frac{u_{c,t+1}^2}{u_{c,t}^2}, R_t \equiv 1/p_t \Rightarrow q_t = \beta^t \frac{u_{c,t}^2}{u_{c,0}^2}$$
.

- Zero initial net for eign asset position, $b_0^1 = b_0^2 = 0$.
- Two *instruments* to decentralize the allocation:
 - **1** A domestic *carbon tax* τ_t on energy producers to affect the intersectoral allocation of labor.

② A tax on borrowing/saving τ_t^b to manipulate world interest rates ⇒ Capital controls!

Problem of H

• Policymaker in H chooses $\{c_t^1 \ge 0, n_t^1 \in [0, 1], E_t^1, c_t^2 \ge 0, S_t\}$ to max

$$\sum_{t=0}^{\infty} \beta^t u^1(c_t^1)$$

subject to

$$c_t^1 + c_t^2 = (1 - D^1(S_t))A_t^1 F^1(n_t^1, E_t^1) + (1 - D^2(S_t))\hat{Y}_t^2$$

$$E_t^1 = z_t^1 f^1(1 - n_t^1)$$

$$S_t = H(S_{t-1}, E_t^1 + E_t^2)$$

$$\sum_{t=0}^{\infty} \beta^t \underbrace{u_c^2(c_t^2)}_{q_t} [c_t^2 - (1 - D^2(S_t))\hat{Y}_t^2] = 0, \quad \text{(IBC of F)}$$

• (E_t^2, \hat{Y}_t^2) functions of $(A_t^2, z_t^2) \Rightarrow outside$ of control of H.

• Prices
$$q_t = \beta^t \frac{u_{c,t}^2}{u_{c,0}^2}$$
: controlled by H subject to IBC.

• Setup similar to a *monopolist* that faces a *competitive fringe*.

• Optimal choice of c_t^2 (Φ multiplier on IBC of F):

• Optimal choice of c_t^2 (Φ multiplier on IBC of F):

うして ふゆ く は く は く む く し く

• MC: reduction of Home consumption $(u_{c,t}^1)$.

• Optimal choice of c_t^2 (Φ multiplier on IBC of F):

- MC: reduction of Home consumption $(u_{c,t}^1)$.
- MB of increasing c_t^2 :
 - 1 Mechanical effect: relax the home budget (first term in RHS)

うして ふゆ く は く は く む く し く

2 $c_t^2 \uparrow \Rightarrow u_{c,t}^2 \downarrow \Rightarrow q_t \downarrow$: prices fall.

• Optimal choice of c_t^2 (Φ multiplier on IBC of F):

$$\underbrace{u_{c,t}^{1}}_{\text{MC of increasing } c_{t}^{2}} = \Phi \underbrace{\left[u_{c,t}^{2} - u_{cc,t}^{2} \underbrace{(c_{t}^{1} - Y_{t}^{1})}_{\text{net buyer (+)/seller (-)}}\right]}_{\text{net buyer (+)/seller (-)}}$$

- MC: reduction of Home consumption $(u_{c,t}^1)$.
- MB of increasing c_t^2 :

• Mechanical effect: relax the home budget (first term in RHS)

- **2** $c_t^2 \uparrow \Rightarrow u_{c,t}^2 \downarrow \Rightarrow q_t \downarrow$: prices fall.
- A reduction in q_t is:
 - Beneficial if H is a net buyer of goods, $c_t^1 > Y_t^1$ ($nx_t^1 < 0$).
 - *Harmful* if H is a net seller of goods, $c_t^1 < Y_t^1$ $(nx_t^1 > 0)$.

• Price wedge:
$$\chi_t \equiv \frac{u_{c,t}^1}{\Phi u_{c,t}^2} - 1$$

• Ratio of marginal utilities:

$$\frac{u_{c,t}^{1}}{u_{c,t}^{2}} = \Phi(1 + \chi_{t}), \quad \chi_{t} = \epsilon_{cc,t}^{2} \frac{c_{t}^{1} - Y_{t}^{1}}{c_{t}^{2}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

where $\epsilon_{cc}^2 = -\frac{u_{cc}^2}{u_c^2}c^2$: *elasticity* of MU of F.

• Price wedge:
$$\chi_t \equiv \frac{u_{c,t}^1}{\Phi u_{c,t}^2} - 1$$

• Ratio of marginal utilities:

$$\frac{u_{c,t}^1}{u_{c,t}^2} = \Phi(1 + \chi_t), \quad \chi_t = \epsilon_{cc,t}^2 \frac{c_t^1 - Y_t^1}{c_t^2}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

where $\epsilon_{cc}^2 = -\frac{u_{cc}^2}{u_c^2}c^2$: *elasticity* of MU of F. • $\Phi_t \equiv \Phi(1 + \chi_t)$: time-varying *inverse* "Pareto" weight.

• Price wedge:
$$\chi_t \equiv \frac{u_{c,t}^1}{\Phi u_{c,t}^2} - 1$$

• Ratio of marginal utilities:

$$\frac{u_{c,t}^{1}}{u_{c,t}^{2}} = \Phi(1 + \chi_{t}), \quad \chi_{t} = \epsilon_{cc,t}^{2} \frac{c_{t}^{1} - Y_{t}^{1}}{c_{t}^{2}}$$

where $\epsilon_{cc}^2 = -\frac{u_{cc}^2}{u_c^2}c^2$: *elasticity* of MU of F.

• $\Phi_t \equiv \Phi(1 + \chi_t)$: time-varying inverse "Pareto" weight.

• Power utility: $\theta_t^1 \equiv c_t^1/Y_t, s_t^1 \equiv Y_t^1/Y_t.$

$$\left(\frac{\theta_t^1}{1-\theta_t^1}\right)^{-\rho} = \Phi\left(1+\rho\frac{\theta_t^1-s_t^1}{1-\theta_t^1}\right)$$

 \Rightarrow time-varying consumption share (due to market power), $\theta_t^1 = \theta^1(s_t^1)!$

• Price wedge:
$$\chi_t \equiv \frac{u_{c,t}^1}{\Phi u_{c,t}^2} - 1$$

• Ratio of marginal utilities:

$$rac{u_{c,t}^1}{u_{c,t}^2} = \Phi(1+\chi_t), \quad \chi_t = \epsilon_{cc,t}^2 rac{c_t^1 - Y_t^1}{c_t^2}$$

where $\epsilon_{cc}^2 = -\frac{u_{cc}^2}{u_c^2}c^2$: *elasticity* of MU of F.

- $\Phi_t \equiv \Phi(1 + \chi_t)$: time-varying inverse "Pareto" weight.
- Power utility: $\theta_t^1 \equiv c_t^1/Y_t, s_t^1 \equiv Y_t^1/Y_t.$

$$\left(\frac{\theta_t^1}{1-\theta_t^1}\right)^{-\rho} = \Phi\left(1+\rho\frac{\theta_t^1-s_t^1}{1-\theta_t^1}\right)$$

 \Rightarrow time-varying consumption share (due to market power), $\theta_t^1 = \theta^1(s_t^1)!$

•
$$\frac{\partial \theta_t^1}{\partial s_t^1} > 0, \frac{\partial \chi_t}{\partial s_t^1} < 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Consumption share θ and price wedge χ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

• $\rho = 2, \Phi = 0.7141.$

• At the Pareto-optimal allocation θ is *constant!*

• Wedge in IMRS as long as χ_t varies!

$$p_t = \beta \frac{u_{c,t+1}^2}{u_{c,t}^2} = \frac{1 + \chi_t}{1 + \chi_{t+1}} \cdot \beta \frac{u_{c,t+1}^1}{u_{c,t}^1}$$

• Wedge in IMRS as long as χ_t varies!

$$p_t = \beta \frac{u_{c,t+1}^2}{u_{c,t}^2} = \frac{1 + \chi_t}{1 + \chi_{t+1}} \cdot \beta \frac{u_{c,t+1}^1}{u_{c,t}^1}$$

• Decentralization with τ_{t+1}^b :

$$p_t = (1 + \tau_{t+1}^b) \beta \frac{u_{c,t+1}^1}{u_{c,t}^1} \Rightarrow \tau_{t+1}^b \equiv \frac{\chi_t - \chi_{t+1}}{1 + \chi_{t+1}}$$

• Wedge in IMRS as long as χ_t varies!

$$p_t = \beta \frac{u_{c,t+1}^2}{u_{c,t}^2} = \frac{1 + \chi_t}{1 + \chi_{t+1}} \cdot \beta \frac{u_{c,t+1}^1}{u_{c,t}^1}$$

• Decentralization with τ_{t+1}^b :

$$p_t = (1 + \tau_{t+1}^b) \beta \frac{u_{c,t+1}^1}{u_{c,t}^1} \Rightarrow \tau_{t+1}^b \equiv \frac{\chi_t - \chi_{t+1}}{1 + \chi_{t+1}}$$

• Power utility:

$$\tau_{t+1}^b \simeq \ln(1 + \tau_{t+1}^b) = \rho \cdot \left[\ln \frac{\theta_{t+1}^1}{\theta_t^1} - \ln \frac{1 - \theta_{t+1}^1}{1 - \theta_t^1} \right]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Wedge in IMRS as long as χ_t varies!

$$p_t = \beta \frac{u_{c,t+1}^2}{u_{c,t}^2} = \frac{1 + \chi_t}{1 + \chi_{t+1}} \cdot \beta \frac{u_{c,t+1}^1}{u_{c,t}^1}$$

• Decentralization with τ_{t+1}^b :

$$p_t = (1 + \tau_{t+1}^b) \beta \frac{u_{c,t+1}^1}{u_{c,t}^1} \Rightarrow \tau_{t+1}^b \equiv \frac{\chi_t - \chi_{t+1}}{1 + \chi_{t+1}}$$

• Power utility:

$$\tau^{b}_{t+1} \simeq \ln(1 + \tau^{b}_{t+1}) = \rho \cdot \left[\ln \frac{\theta^{1}_{t+1}}{\theta^{1}_{t}} - \ln \frac{1 - \theta^{1}_{t+1}}{1 - \theta^{1}_{t}} \right]$$

- $s_{t+1}^1 > s_t^1 \Rightarrow \frac{Y_{t+1}^1}{Y_t^1} > \frac{Y_{t+1}^2}{Y_t^2} \Rightarrow \theta_{t+1}^1 > \theta_t^1 \Rightarrow \tau_{t+1}^b > 0 \Rightarrow tax on borrowing.$
- $s_{t+1}^1 < s_t^1 \Rightarrow \frac{Y_{t+1}^1}{Y_t^1} < \frac{Y_{t+1}^2}{Y_t^2} \Rightarrow \theta_{t+1}^1 < \theta_t^1 \Rightarrow \tau_{t+1}^b < 0 \Rightarrow tax on saving.$
- $s_{t+1}^1 = s_t^1 \Rightarrow \theta_{t+1}^1 = \theta_t^1 \Rightarrow \tau_{t+1}^b = 0$. Same at the BGP.

Indicative path of τ_t^b

- $\rho = 2, \Phi = 0.7141.$
- $\tau_{t+1}^b = \frac{\chi_t \chi_{t+1}}{1 + \chi_{t+1}}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

• Shadow cost of emissions

• Shadow cost of emissions

- Damages of F enter the shadow cost of emissions for H!
 - $\chi_t > 0 \Rightarrow H$ is net buyer $(nx_t < 0) \Rightarrow$ foreign damages are costly to $H \Rightarrow$ cost of emissions \uparrow

• Shadow cost of emissions

- Damages of F enter the shadow cost of emissions for H!
 - $\chi_t > 0 \Rightarrow H$ is net buyer $(nx_t < 0) \Rightarrow$ foreign damages are costly to $H \Rightarrow$ cost of emissions \uparrow
 - χ_t < 0 ⇒ H is net seller (nx_t > 0) ⇒ foreign damages are beneficial to H ⇒ cost of emissions ↓

• Shadow cost of emissions

- Damages of F enter the shadow cost of emissions for H!
 - $\chi_t > 0 \Rightarrow H$ is net buyer $(nx_t < 0) \Rightarrow$ foreign damages are costly to $H \Rightarrow$ cost of emissions \uparrow
 - *χ_t* < 0 ⇒ H is net seller (nx_t > 0) ⇒ foreign damages are beneficial to H ⇒ cost of emissions ↓

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• If $D_{S,t}^1 = 0$, $\tilde{\xi}_t^M \neq 0 \Rightarrow$ carbon tax/subsidy even for zero H damages!

• Shadow cost of emissions

- Damages of F enter the shadow cost of emissions for H!
 - $\chi_t > 0 \Rightarrow H$ is net buyer $(nx_t < 0) \Rightarrow$ foreign damages are costly to $H \Rightarrow$ cost of emissions \uparrow
 - χ_t < 0 ⇒ H is net seller (nx_t > 0) ⇒ foreign damages are beneficial to H ⇒ cost of emissions ↓
 - If $D_{S,t}^1 = 0$, $\tilde{\xi}_t^M \neq 0 \Rightarrow$ carbon tax/subsidy even for zero H damages!
- *Parametric* example:

$$\frac{\tau_t^M}{Y_t} = \sum_{i=0}^{\infty} \beta^i \left(\frac{\theta_{t+i}^1}{\theta_t^1}\right)^{-\rho} \left(\frac{Y_{t+i}}{Y_t}\right)^{1-\rho} (1-d_i) \left[\gamma^1 s_{t+i}^1 + \gamma^2 (1-s_{t+i}^1) \frac{\chi_{t+i}}{1+\chi_{t+i}}\right]$$
• BGP: $\frac{\tau_t^M}{Y_t} = (\gamma^1 s^1 + \gamma^2 (1-s^1) \frac{\chi}{1+\chi}) \sum_{i=0}^{\infty} \tilde{\beta}^i (1-d_i), \tilde{\beta} \equiv \beta (1+g)^{1-\rho}.$

Future steps and concluding remarks

• How important are the results on capital controls and carbon taxes quantitatively?

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

Future steps and concluding remarks

- How important are the results on capital controls and carbon taxes quantitatively?
- What if the policymaker in H were "altruistic" and maximized the weighted utility of H and F?

• *Qualitatively*, similar mechanisms would emerge.

Future steps and concluding remarks

- How important are the results on capital controls and carbon taxes quantitatively?
- What if the policymaker in *H* were "altruistic" and maximized the weighted utility of *H* and *F*?
- *Qualitatively*, similar mechanisms would emerge.
- Carbon tax and capital control wars?
- H chooses $(\tau_t^1, \tau_t^{b,1})$, F chooses $(\tau_t^2, \tau_t^{b,2})$ and play Nash against each other.

THANK YOU!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Choi, Jason, Rishabh Kirpalani, and Diego J. Perez. 2024. US Public Debt and Safe Asset Market Power. *Journal of Political Economy* Forthcoming.
- Costinot, Arnaud, Guido Lorenzoni, and Ivan Werning. 2014. A Theory of Capital Controls as Dynamic Terms-of-Trade Manipulation. *Journal of Political Economy* 122 (1):77–128.

うして ふゆ く は く は く む く し く

Golosov, Mikhail, John Hassler, Per Krusell, and Aleh Tsyvinski. 2014. Optimal taxes on fossil fuel in general equilibrium. *Econometrica* 82 (1):41–88.