Stylized facts 000000000

Model 00000000 Calibration 000 Results 000000

Bank Heterogeneity, Deposits, and the Pass-through of Interest Rates

Oliver de Groot University of Liverpool & CEPR Gustavo Mellior University of Liverpool

Qatar Centre for Global Banking & Finance July 2024

Introduction	
●000	

Stylized facts

Model 0000000 Calibration 000 Results 000000

Motivation

- Fed, Bank of England, and ECB all increased policy rates sharply in 2022
- However, interest rates on deposit and savings accounts have been slow to follow

Introduction	Stylized facts	Model	Calibration	Results	Appendix
0000	0000000000	00000000	000	000000	000000000000000000000000000000000000000

• In the UK, bank regulators have pointed the finger at banks exploiting "loyal" customers

The Guardian

https://www.theguardian.com > money > apr > regulat...

Regulator warns UK banks over miserly savings rates for ...

21 Apr 2023 — Regulator warns UK banks over miserly savings rates for loyal customers. The "harm" caused to millions of loyal customers of high street banks ...

Stylized facts 000000000 Model 00000000 Calibration 000 Results 000000 • It is well documented that customers switch current accounts infrequently (4-6% per year in the UK) reason for this ... inertia or preference for the status quo. The longer a customer has been with their bank the stronger their 'mooring' to it (Hartfree et al., 2016)

Note: Shadow chancellor Ed Balls, Sunday 8 July 2012

Stylized facts 0000000000 Model 00000000 Results 000000

Our paper in a nut-shell...

- ... is to study deposit rate dynamics
- What is already known?
 - ▶ Fed raises rates → banks exploit their market power → deposit rates rise less → fed funds-deposit spread widens
 - "Deposit channel of monetary policy", (Drechsler et al., 2017)
- What is new?
 - ▶ Heterogeneity in the dynamics of relative deposits rates across banks & time
- We identify two new stylized facts using US data
 - ► (1) More leveraged banks & (2) banks with a large deposit base lower their relative deposit rates during periods of financial stress
- We build a continuous-time heterogeneous bank model to explain these stylized facts
 - ► Model features (1) customer capital ("deep habits") & (2) occasionally binding leverage constraints

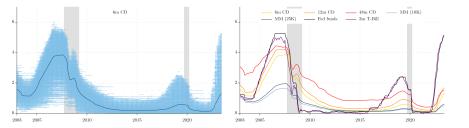
Stylized facts •00000000 Model 00000000 Calibration 000 Results 000000

Empirics

Stylized facts 000000000 Model 0000000c Calibration 000 Results 000000

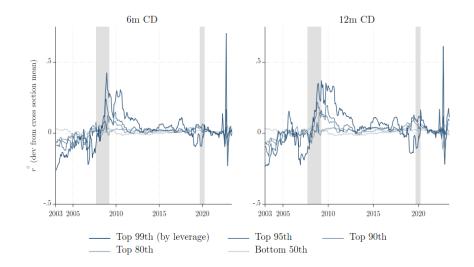
US bank-level data

- Focus on interest rates on new deposit accounts from RateWatch (weekly, aggregated to monthly, 2000-2023)
- Also have "average" interest rates on deposits (based on interest rate expenditure) from Call Reports (quarterly, 1998-2023)



Introduction Stylized facts Model Calibration Results Appendix

Heterogeneity in deposit rates (by leverage) Deviation from cross-sectional mean (RateWatch)

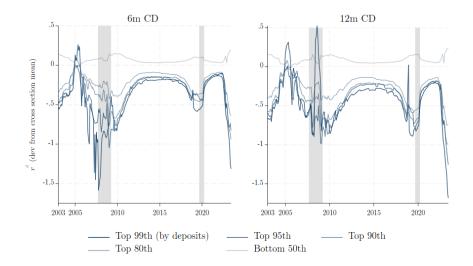


 Introduction
 Stylized facts
 Model
 Calibration

 0000
 000●000000
 00000000
 000

Results 000000

Heterogeneity in deposit rates (by deposit base) Deviation from cross-sectional mean (RateWatch)



Stylized facts

Model 00000000 Calibration 000 Results 000000

Empirical setup

• Local projections (Jorda, 2005):

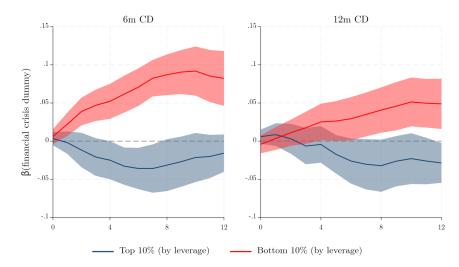
$$ilde{r}_{i,t+h}^{d} = lpha_i + eta_h x_t + \gamma_{\mathbf{h}} \mathbf{X}_{\mathbf{i},\mathbf{t}} + \delta_{\mathbf{h}} \mathbf{X}_{\mathbf{t}} + \epsilon_{i,t+h}$$

- ▶ $\tilde{r}_{i,t+h}^d = r_{i,t+h}^d \bar{r}_{t+h}^d$ deposit rate of bank *i* in month t + h, in deviation from the cross-section mean
- x_t is either
 - $D_t^{\text{fincrisis}}$, a financial stress dummy (based on Ludvigson, 2021, financial uncertainty index),
 -
 $\varepsilon_t^{mp},$ exogenous monetary policy surprise (Jarociński, 2024)
- Testing for heterogeneous effects
 - ▶ Rank banks by leverage (or size of deposit base)
 - ▶ Define dummy $D_{it}^d = 1$ for bank *i* in decile *d* in year *t*
 - ▶ Interact dummy with all explanatory variables
 - Gives decile-specific coefficient estimates of β_h^d

Model 00000000 Calibration 000 Results 000000

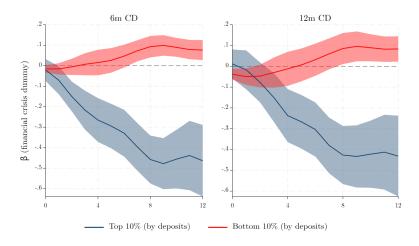
Response to financial stress (by leverage)

Highly leveraged banks lower their relative deposit rates

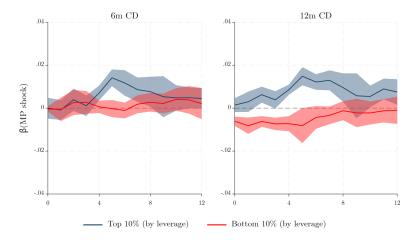


Response to financial stress (by deposit base)

Banks with a large deposit base lower their relative deposit rates (Note: unconditional cross-sectional correlation between leverage and deposit base is low ≈ 0.07)

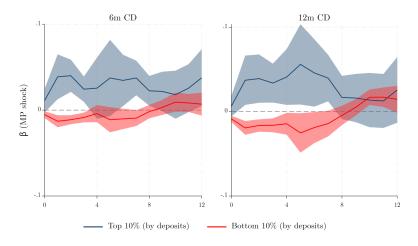


Highly leveraged banks raise their relative deposit rates in response to a monetary tightening



Response to MP shock (by deposit base)

Banks with a large deposit base raise their relative deposit rates in response to a monetary tightening



Stylized facts 00000000

Model

Calibration 000 Results 000000

From empirics to model

- Substantial heterogeneity in deposit rate dynamics across banks → need a model of bank heterogeneity to capture this
- In the model, banks are heterogeneous along two dimensions
 - ① (Occassionally binding) financial frictions → bank net worth
 ② Deep habit formation → stock of "customer capital"

• Related literature

- ▶ Heterogeneous bank models: Jamilov (2021), Jamilov & Monacelli (2021), Bellifemine et al. (2022)
- ▶ Deep habit formation: Ravn et al. (2006), Gilchrist et al. (2017, 2023), Dempsey & Faria-e Castro (2021)

Stylized facts

Model ●0000000 Calibration 000 Results 000000

Model

Introduction	
0000	

Stylized facts 000000000 Model o●oooooo Calibration 000 Results 000000

Households

- Infinite horizon, representative household (t- continuous)
- Consumes, C_t , and saves/accesses liquidity service from a continuum of banks (i): d_{it}
- Instantaneous utility

$$u\left(C_{t}\right) + \vartheta\left(\int_{0}^{1} \left(\frac{d_{it}}{s_{it}^{\theta}}\right)^{\varepsilon} \mathrm{d}i\right)^{\frac{1}{\varepsilon}}$$

- ► CES over liquidity services
- ► Deep <u>external</u> habit formation: Customer capital s_{it} where $\theta < 0$ and $\dot{s}_{it} = (1 h) (d_{it} s_{it})$
- Wealth accumulation (risk-free rate: r_t , deposit rate: r_{it}^d)

$$\dot{A}_t = r_t A_t - \int_0^1 \left(r_t - r_{it}^d \right) d_{it} \mathrm{d}i + \Pi_t - C_t$$

Household's first-order conditions

• (Standard) Euler equation

$$\dot{C}_t = \frac{1}{\eta} \left(r_t - \rho \right) C_t$$

• Deposit demand curve

$$r_{it}^{d} = r_{t} - \frac{\vartheta}{u'(C_{t})} \left(\frac{d_{it}}{\tilde{D}_{t}}\right)^{\varepsilon - 1} s_{it}^{-\theta\varepsilon}$$

- r^d_{it} upward sloping in d_{it} (market power: ε < 1)
 r^d_{it} bounded above by r_t
- curve shifts down with s_{it} (effect of habits)

Stylized facts

Model 000€0000 Calibration 000 Results 000000

Banks

- Continuum of banks (owned by the households) [drop i subscript]
- Banks "exit" at rate ζ (transferring equity to household) and replaced with new banks with initial equity ωN_t
- Balance sheet: $k_t = d_t + n_t \longrightarrow$ leverage: $\phi_t = k_t/n_t$
- A bank maximizes expected present discount value of equity (net worth, n_t) at exit

$$V_0 = \max_{d_t} \mathbb{E}_0 \int_0^\infty \zeta n_t e^{-(\int_0^t r_\tau d\tau + \zeta t)} dt$$

• Faces a potentially binding incentive compatibility constraint ("endogenous leverage constraint")

$$V_t \ge \lambda k_t$$

Introduction	
0000	

Stylized facts

Model 0000€000 Calibration 000 Results 000000

Banks cont.

• Takes account of household deposit demand function

$$r_t^d = r_t - \frac{\vartheta}{u'(C_t)} \left(\frac{d_t}{\tilde{D}_t}\right)^{\varepsilon - 1} s_t^{-\theta \varepsilon}$$

• Internalizes the effect on customer capital

$$\dot{s}_t = (1-h)\left(d_t - s_t\right)$$

• And is governed by the accumulation of net worth

$$\mathrm{d}n_{t} = \left(r_{t}^{k}k_{t} - r_{t}^{d}d_{t} - \mathsf{c}\left(k_{t}\right)\right)\mathrm{d}t + n_{t}\sigma\mathrm{d}Z_{t}$$

- \blacktriangleright c(·) is convex portfolio cost
- \blacktriangleright Z_t is a Wiener process (idiosyncratic net worth shocks)

Introduction	Stylized facts	Model	Calibration	Results	Appendix
0000	0000000000	000000000	000	000000	000000000000000000000000000000000000000
Banks of	aant				
Danks (COIIU.				

• Optimal solution satisfies Hamilton-Jacobi-Bellman (HJB) [drop t subscript]

$$(r+\zeta)V = \max_{d_t} \zeta n + \frac{\partial V}{\partial n} S_n + \frac{\partial V}{\partial s} S_s + \frac{(n\phi\sigma)^2}{2} \frac{\partial^2 V}{\partial n^2}$$

where $S_n \& S_s$ are drifts in net worth & customer capital

• First-order condition (of unconstrained banks, $V > \lambda k$)

$$0 = \frac{\partial V}{\partial n} \left(r^k - r^d - \frac{\partial r^d}{\partial d} d - \mathbf{c}'(k) \right) + \frac{\partial V}{\partial s} (1-h) + \phi (n\sigma)^2 \frac{\partial^2 V}{\partial n^2}$$

Introduction	
0000	

Stylized facts 000000000 Model oooooo●o Calibration 000 Results 000000

Banks cont.

$$0 = \frac{\partial V}{\partial n} \left(r^k - r^d - \frac{\partial r^d}{\partial d} d - \mathsf{c}'(k) \right) + \frac{\partial V}{\partial s} (1-h) + \phi(n\sigma)^2 \frac{\partial^2 V}{\partial n^2}$$

▶ $r^k - r^d > 0$: Increase d (leverage up)

- ► $-\frac{\partial r^d}{\partial d}d$: Market power (increasing *d* requires a higher r^d , lowering the interest margin)
- ▶ c'(k): Without portfolio costs, all banks would be constrained
- ▶ (1-h): Increase in d today increases customer habits
- Key idea:
 - ▶ Unconstrained banks face an intertemporal choice: Raising deposit rate lowers today's profits but builds customer capital (habits & market share) & increases future profits
 - ▶ Leverage constrained banks cannot be forward looking

roduction	Stylized
00	000000

ylized facts

Model ooooooo€ Calibration 000 Results 000000

- Rest of the model is very stylized
 - ▶ Firms borrow from banks to finance capital
 - Aggregate production: $Y_t = K_t^{\alpha}$
 - Aggregate capital accumulation: $\dot{K}_t = I_t \delta K_t$
 - Thus, $r_t^k = \alpha K_t^{\alpha-1} \delta$ is common across banks
 - Aggregation / market clearing: $K_t = \int_0^1 k_{i,t} di$ etc.
- Not for today:
 - $\blacktriangleright\,$ (Aggregate) capital/investment adjustment costs
 - ► New-Keynesian block

Stylized facts

Model 00000000 Calibration •00 Results 000000

Calibration

Stylized facts

Model 0000000 Calibration $0 \bullet 0$

Results 000000

Parameterization

Parameters	Description	Values
Standard		
ho imes 100	Discount rate	1.010
δ	Capital depreciation rate	0.025
α	Capital share of income	0.333
G/Y	Government spending ratio	0.200
Banks		
λ	Incentive constraint	0.286
ζ	Bank exit rate	0.029
$\sigma^2 \times 100$	Idiosyncratic bank net worth risk	0.010
$arphi_0$	Portfolio cost	0.002
φ_1	Portfolio cost	0.500
Demand for liquidity		
$\vartheta \times 100$	Utility value of liquidity	0.045
ε	$1-1/\varepsilon$ elasticity of substitution	0.800
h	Habit persistence	0.950
θ	Habit strength	-0.530

• $u(C_t) = \log(C_t)$ and $c(k_t) = \varphi_0 k_t^{\varphi_1}$

Stylized facts

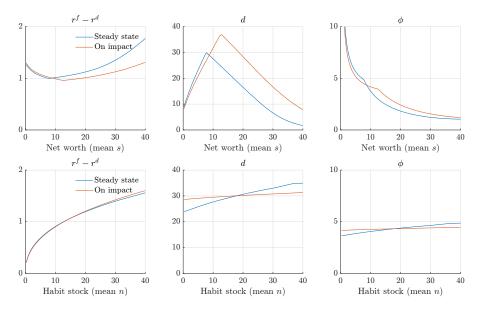
Model 000000 Calibration 00• Results 000000

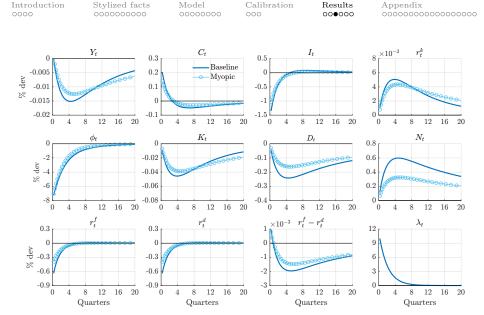
Steady state moments

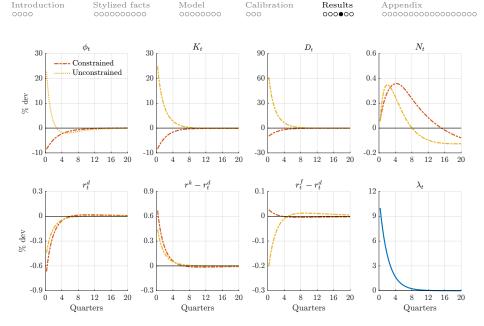
Moment	Model	Data
Leverage, ϕ		
mean	9.467	10.030
st.dev.	6.532	2.670
Deposit rate, r^d (% ann)		
mean	2.890	2.890
st.dev.	0.194	0.520
r^k (% ann)	6.638	5.000
$r^f - r^d$ spread (% ann)	1.150	1.400
Fraction of constrained banks	0.820	

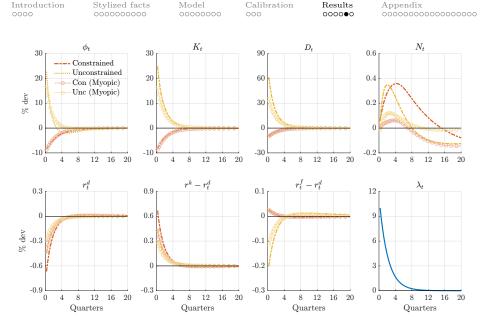
Stylized facts 0000000000 Model 00000000 Calibration 000 Results ●00000

$\label{eq:results} \begin{array}{c} \mbox{Results} \\ \mbox{Today, focus on a financial shock: 10\% increase in λ} \end{array}$

Model 00000000 Calibration 000 Results 0●0000 







Stylized facts

Model 0000000 Calibration 000 Results 00000●

Conclusion

- Empirical heterogeneity across banks in the dynamic setting of deposit rates
- We build a heterogeneous bank model to capture this heterogeneity
- Much still to do—comments very welcome!

Stylized facts 000000000

Model 00000000 Calibration 000 Results 000000

3 period model

Stylized facts 000000000 Model 00000000 Calibration 000 Results 000000 Appendix ••••••••••

Stylized model Ia

Representative household

$$\max \sum_{t=0}^{2} \beta^{t} u\left(C_{t}\right) + \sum_{t=0}^{1} \beta^{t} \vartheta \left(\int_{0}^{1} \left(\frac{d_{t}}{s_{t}^{\theta}}\right)^{\varepsilon}\right)^{\frac{1}{\varepsilon}}$$

s.t.
$$C_{t} + B_{t} + \int_{0}^{1} d_{t} = Y_{t} - N_{t}$$

$$C_{t+1} + B_{t+1} + \int_{0}^{1} d_{t+1} = Y_{t+1} + R_{t}B_{t} + \int_{0}^{1} r_{d,t}d_{t} + \Pi_{t+1},$$

$$C_{t+2} = R_{t+1}B_{t+1} + \int_{0}^{1} r_{t+1}^{d}d_{t+1} + \Pi_{t+2},$$

Stylized facts 000000000 Model 00000000 Calibration 000 Results 000000

Stylized model Ib

Representative household

Deposit demand curve

$$r_{d,t} = R_t \left(1 - \frac{1}{u'(C_t)} \vartheta \left(\frac{d_t}{\tilde{D}_t} \right)^{\varepsilon - 1} s_t^{-\theta \varepsilon} \right) \quad \text{for} \quad t = 0, 1.$$

The deposit rate is

- a spread below the risk-free rate
- increasing in the quantity of deposits $(0 < \epsilon < 1)$
- decreasing in the stock of habits $(\theta < 0)$

Stylized facts

Model 00000000 Calibration 000 Results 000000

Stylized model II Individual bank

$$\begin{aligned} v_t &= \max \Lambda_{t,t+1} \pi_{t+1} + \Lambda_{t,t+2} \pi_{t+2} \\ &\text{s.t.} \\ n_{t+1} + \pi_{t+1} &= R_k k_t - r_{d,t} d_t - \frac{\varphi}{2} d_t^2, \\ \pi_{t+2} &= R_k k_{t+1} - r_{d,t+1} d_{t+1} - \frac{\varphi}{2} d_{t+1}^2, \\ \text{Leverage constraints:} \quad v_t \geq \lambda k_t \quad \text{for} \quad t = 0, 1 \\ v_{t+1} &= \Lambda_{t+1,t+2} \pi_{t+2}, \\ \text{Balance sheet:} \quad k_t &= d_t + n_t \quad \text{for} \quad t = 0, 1 \\ \text{Deposit demand curve:} \quad r_{d,t} &= r_d (d_t, s_t) \quad \text{for} \quad t = 0, 1 \\ \text{Evolution of habit stock:} \quad s_{t+1} &= s_t^h d_t^{1-h}. \end{aligned}$$

Stylized facts

Model 0000000 Calibration 000 Results 000000

Calibration I

Parameters	Description	Values
R_k	Return on capital	1.090
eta	Discount factor	0.952
λ	Incentive constraint	0.200
N_0	Aggregate bank net worth	0.050
n_0^{min}	Minimum bank net worth	0.010
n_0^{max}	Maximum bank net worth	0.250
φ	Portfolio cost	0.100
ϑ	Utility value of liquidity	0.075
ε	$1 - 1/\varepsilon$ elasticity of substitution	0.800
h	Habit persistence	0.000
θ	Habit strength	-2.000

Introduction	
0000	

Stylized facts

Model 0000000 Calibration 000 Results 000000

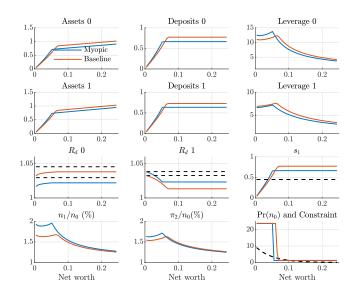
Calibration II

Variables	t = 0	t = 1	t = 2
C	0.533	0.531	0.522
K	0.467	0.483	
D	0.417	0.402	
$N(\Pi)$	0.050	0.076	0.112
Leverage	9.345	6.318	
R(%)	4.554	3.286	
$R_d(\%)$	3.751	1.886	
$\Pr(\text{binding})$ (%)	0.738	0.711	

Stylized facts

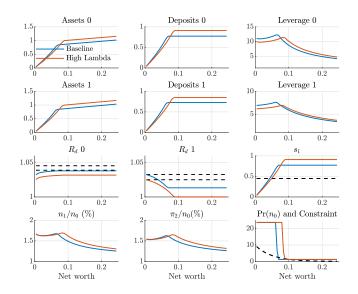
Model 0000000 Calibration 000 Results 000000

Results I: Frictions and habits

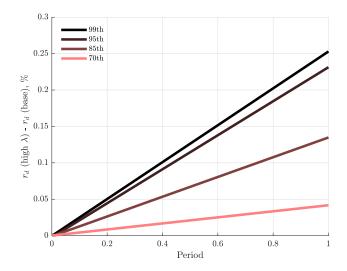


Introduction Stylized facts Model Calibration Results Appendix

Results IIa: Tightening financial conditions



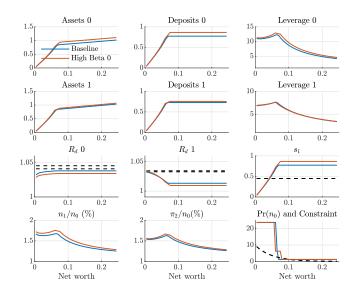
Results IIb: Tightening financial conditions



Stylized facts

Model 00000000 Calibration 000 Results 000000

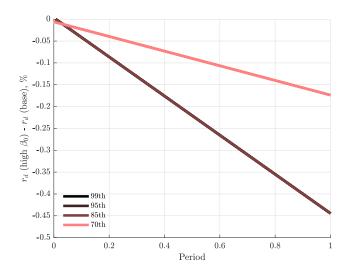
Results IIIa: Falling interest rates



Stylized facts

Model 00000000 Calibration 000 Results 000000

Results IIIb: Falling interest rates

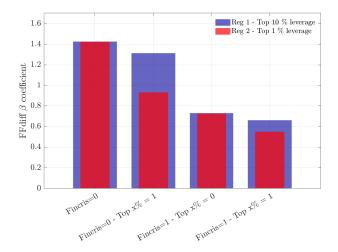


Stylized facts

Model 00000000 Calibration 000 Results 000000

Regressions I - Leverage and financial crisis

More leveraged banks cut deposit rates less when FFR \downarrow during the financial crisis

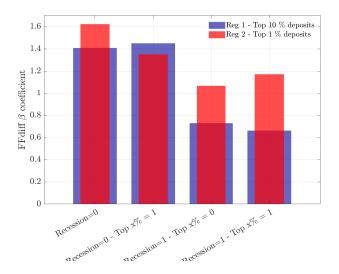


Stylized facts

Model 00000000 Calibration 000 Results 000000

Regressions II - Bank size and recessions

During recessions bigger banks cut r^d more as FFR $\downarrow.$

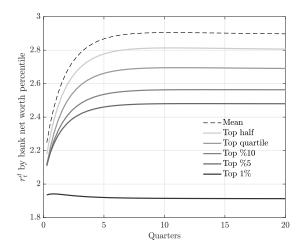


Stylized facts 0000000000 Model 00000000 Calibration 000

Results 000000

Transition - deposit rates

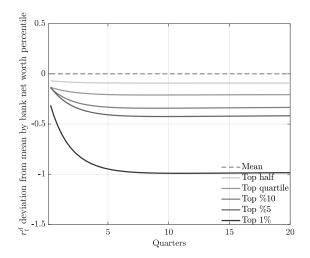
Increase in λ (by bank net worth)



Stylized facts 000000000 Model 00000000 Calibration 000 Results 000000

Transition - deposit rates

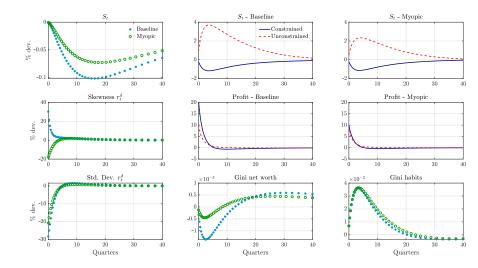
In deviation from mean



Stylized facts

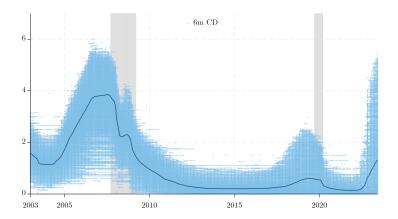
Model 0000000 Calibration 000 Results 000000

Transition - Habits



Stylized facts 000000000 Model 0000000 Calibration 000 Results 000000

6m CD deposit rates



IntroductionStylized factsModel000000000000000000000

Calibration 000 Results 000000 Appendix 0000000000000000000

$12\mathrm{m}$ CD deposit rates

