The green metamorphosis of a Small Open Economy

Florencia S. Airaudo* Evi Pappa** Hernán D. Seoane***

*Federal Reserve Board, **Universidad Carlos III & CEPR, ***Universidad Carlos III

QCGBF Annual Conference July 2024

*Views are our own and do not necessarily reflect those of the Board of Governors or the Federal Reserve System.

• Many small open economies, especially emerging countries, are **lagging behind in** the adoption of clean energy

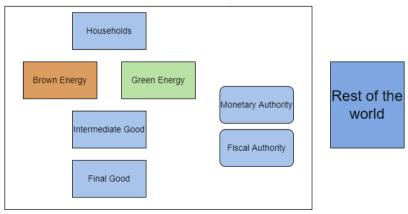
- Many small open economies, especially emerging countries, are **lagging behind in** the adoption of clean energy
- Low fiscal incentives to adopt greener technology data

- Many small open economies, especially emerging countries, are **lagging behind in** the adoption of clean energy
- Low fiscal incentives to adopt greener technology data
- Even though small open economies may not individually make a sizeable contribution to global CO2 emissions, they certainly affect them as a whole

- Many small open economies, especially emerging countries, are **lagging behind in** the adoption of clean energy
- Low fiscal incentives to adopt greener technology data
- Even though small open economies may not individually make a sizeable contribution to global CO2 emissions, they certainly affect them as a whole
- Studying the transition in such economies provides useful insights for portraying the macroeconomic dynamics of the green transition

- New-Keynesian SOE model with endogenous growth and 2 types of energy:
 - ▶ Green energy: endogenous domestic production
 - ▶ Brown energy: exogenously determined

- New-Keynesian SOE model with endogenous growth and 2 types of energy:
 - ► Green energy: endogenous domestic production
 - ► Brown energy: exogenously determined
- Directed input-saving technical change between energy and other inputs (as in Hassler et al (2021)).


- New-Keynesian SOE model with endogenous growth and 2 types of energy:
 - ► Green energy: endogenous domestic production
 - ► Brown energy: exogenously determined
- Directed input-saving technical change between energy and other inputs (as in Hassler et al (2021)).
- Supply-side effects of green transition

- New-Keynesian SOE model with endogenous growth and 2 types of energy:
 - ► Green energy: endogenous domestic production
 - ► Brown energy: exogenously determined
- Directed input-saving technical change between energy and other inputs (as in Hassler et al (2021)).
- Supply-side effects of green transition
- Calibrate it to Chile and study policy-induced green transitions: 1) carbon taxes; 2) green subsidies; 3) public investment in green capital

- New-Keynesian SOE model with endogenous growth and 2 types of energy:
 - ▶ Green energy: endogenous domestic production
 - ▶ Brown energy: exogenously determined
- Directed input-saving technical change between energy and other inputs (as in Hassler et al (2021)).
- Supply-side effects of green transition
- Calibrate it to Chile and study policy-induced green transitions: 1) carbon taxes; 2) green subsidies; 3) public investment in green capital
- Offer laboratory for policy evaluations and welfare implications

NK-SOE Model with Endogenous growth

Small Open Economy

Household problem

$$\max_{c_{t},i_{t},i_{t}^{G},B_{t+1},B_{t+1}^{*},k_{t+1},s_{t+1}^{G}}\sum_{t=0}^{\infty}\beta^{t}U\left(c_{t}\right)$$

$$i_t^G + i_t + c_t + \frac{B_{t+1}}{P_t} + FX_t \frac{B_{t+1}^*}{P_t} = \frac{B_t}{P_t} R_{t-1} + FX_t \frac{B_t^*}{P_t} R_{t-1}^* \Phi_t(\tilde{B}_t^*) + w_t \bar{h} + \frac{R_t^k}{P_t} k_t + \frac{R_t^G}{P_t} s_t^G + \Gamma_t - \tau_t$$

$$s_{t+1}^G = (1 - \delta) s_t^G + i_t^G + \Phi_s(s_{t+1}^G, s_t^G) s_t^G$$

$$k_{t+1} = (1 - \delta)k_t + i_t + \Phi_k(k_{t+1}, k_t)k_t$$

 Γ_t are profits and τ_t lump sum taxes $i^G_t,\,s^G_t$ are green capital investment and stock

Intermediate goods producers

- Monopolistic competition
- Choose factors and prices, subject to Rotemberg adjustment costs
- Technology:

$$y_{H,i,t} = \left[\left(A_t \left(k_{i,t} \right)^{\alpha} \bar{h}_i^{(1-\alpha)} \right)^{\frac{\epsilon-1}{\epsilon}} + \left(A_{e,t} e_{i,t} \right)^{\frac{\epsilon-1}{\epsilon}} \right]^{\frac{\epsilon}{\epsilon-1}}$$

with:

$$e_{i,t} = \bar{E}\left[\left(1-\zeta\right)\left(e_{i,t}^{G}\right)^{\xi} + \zeta\left(e_{i,t}^{B}\right)^{\xi}\right]^{\frac{1}{\xi}}$$

k capital, \bar{h} labor, e total energy, e^{G} and e^{B} green and brown energy

 $\bullet\,$ The government taxes brown energy by a carbon tax τ^e

Directed technical change (Hassler et al (2021))

The proportion of researchers (n) in each sector affects the productivity $A_{e,t}$, A_t :

$$g_t^A = \frac{A_t}{A_{t-1}} = 1 + Bn_t^\phi$$

$$g_t^{Ae} = \frac{A_{e,t}}{A_{e,t-1}} = 1 + B_e (1 - n_t)^{\phi}$$

Trade-off in the allocation of researchers

 n_t is chosen optimally by the firms

Green energy production

Maximizes profits:

$$\Gamma_t^G = (1+s)P_t^G e_t^G - R_t^G s_t^G$$

where s is a green subsidy.

Green energy production

Maximizes profits:

$$\Gamma^G_t = (1+s) P^G_t e^G_t - R^G_t s^G_t$$

where s is a green subsidy.

Technology:

$$e_t^G = \Omega[(1-\gamma)(s_t^G)^{\omega} + \gamma(s_t^{G,P})^{\omega}]^{(\mu/\omega)}$$

 Ω productivity level in the production of clean energy

 s_t^G and $s_t^{G,P}$ are green private and public capital.

 ω determines the complementarity/substitutability between private and public capital

- Endowment of brown energy, traded internationally at price $p_t^{B,*}$
- Law of one price, then the domestic price is:

$$p_t^B = rer_t p_t^{B,*}$$

rer is the real exchange rate, $p_t^{B,\ast}$ is exogenous

The government

Central bank

Follows a Taylor rule to set the short-term interest rate

$$\frac{R_t}{R} = \left(\frac{R_{t-1}}{R}\right)^{\rho_R} \left[\left(\frac{\pi_t}{\bar{\pi}}\right)^{\phi_\pi} \left(\frac{y_t}{\bar{y}}\right)^{\phi_y} \right]^{1-\rho_R}$$

The government

Central bank

Follows a Taylor rule to set the short-term interest rate

$$\frac{R_t}{R} = \left(\frac{R_{t-1}}{R}\right)^{\rho_R} \left[\left(\frac{\pi_t}{\bar{\pi}}\right)^{\phi_\pi} \left(\frac{y_t}{\bar{y}}\right)^{\phi_y} \right]^{1-\rho_R}$$

Fiscal Authority

Collects lump sum taxes from households and issues debt subject to a budget constraint:

$$\tau_t + \tau^e p_t^B e_t^B + b_{t+1} = s p_t^G e_t^G + \frac{b_t}{\pi_t} R_{t-1} + i_t^P$$

"green policies": brown taxes, green subsidies, public investment

The tax rule is

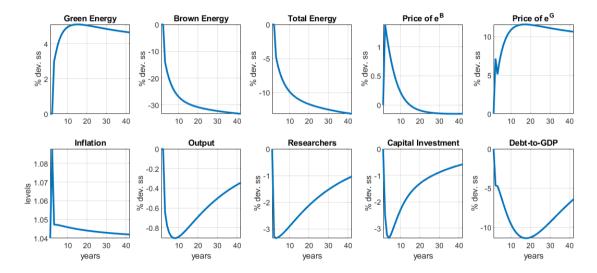
$$\tau_t = \bar{\tau} + \phi_\tau \left(b_t - \bar{b} \right)$$

- We solve for the **perfect foresight** solution
- Calibration: target business cycle first-order moments on NIPA accounts and energy production and use for Chile, in the initial steady state

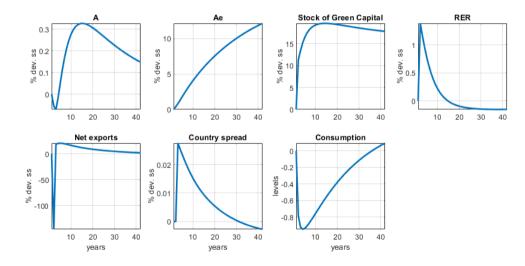
Calibration

	Parameter	Target/source	Value
β	Discount factor	Av. Inflation Chile	0.987
σ	CES elasticity in utility	Standard	1
θ	Subst. H & F in consumption	JP(2011)	0.85
χ	Share F goods in consumption	JP(2011)	0.24
δ	Depreciation capital	Standard	0.12
κ_P	Adj. cost of prices	Standard	19
ϵ_P	Elasticity between varieties	Av. Markup 11%	10
α	Capital share in production	Standard	0.26
R^*	Gross risk free rate	3 months Tbill USA	1.03
\overline{b}	Public debt at initial steady state	Debt-to-GDP 16%	0.14
$ au^*$	Lump sum taxes at initial SS	Public spending/GDP	0.12
$ ho_R$	Interest rate smoothing parameter	Standard	0.9
ϕ_{π}	Interest rate response to inflation	Martinez et al (2020)	1.12
ϕ_y	Interest rate response to output	Standard	0.2
$\phi_{ au}$	Tax response to debt	Standard	0.07
ϕ_A	Sovereign spread parameter	Country spread Chile	0.009

Calibration


	Energy parameters	Target/source	Value
$e^{B,d}$	e^B Domestic endowment	Imported/total energy	0.5
ξ	Subst. energy inputs	Papageorgiou et al (2015)	0.67
μ	Green capital share in e^G	Standard	0.33
ϵ	Subst. energy and K	Jointly calibrated	0.48
ζ	Share of brown energy	Jointly calibrated	0.3
Ω	TFP in e^G	Jointly calibrated	0.03
В	Prod. coef researchers	Jointly calibrated	0.021
Be	Prod. coef researchers	Av. Growth 2.5%	0.11
ϕ	Prod. coef researchers	Hassler et al (2021)	0.92
γ	Green public and private K	An and Kangur (2019)	0.44
ω	Public inv. share in e^G	Substitutes	0.66

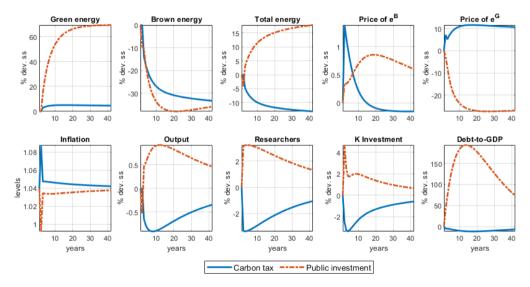
Calibration


	Energy parameters	Target/source	Value
$e^{B,d}$	e^B Domestic endowment	Imported/total energy	0.5
ξ	Subst. energy inputs	Papageorgiou et al (2015)	0.67
μ	Green capital share in e^G	Standard	0.33
ϵ	Subst. energy and K	Jointly calibrated	0.48
ζ	Share of brown energy	Jointly calibrated	0.3
Ω	TFP in e^G	Jointly calibrated	0.03
В	Prod. coef researchers	Jointly calibrated	0.021
Be	Prod. coef researchers	Av. Growth 2.5%	0.11
ϕ	Prod. coef researchers	Hassler et al (2021)	0.92
γ	Green public and private K	An and Kangur (2019)	0.44
ω	Public inv. share in e^G	Substitutes	0.66

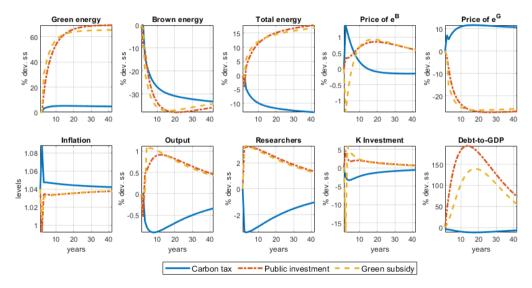
- Green transition
 - ▶ Carbon tax hike from \$5/t to \$35/t as in Chile's Climate Plan.
 - ▶ Starting from the initial steady state, we assume a 40-year transition
 - ▶ Transition results in a 35% decrease in brown energy usage

A transition with an increase in carbon taxes

A Transition with an increase in carbon taxes



- Supply frictions Go
- Production structure for energy inputs Go
- Speed of transition Go
- Exporter country Go
- Substitution or complementarity in green capital Go


Carbon taxes decrease brown energy usage by 35%. What about other instruments?

- Green subsidies can achieve a similar decrease in brown energy usage only if raised to 300% (12% of GDP)
- **Public investment in green capital** can do it with an increase in public green investment from zero to 7% of GDP (large fiscal expansion!)

Transitions with different fiscal instruments

Transitions with different fiscal instruments

Costs of transition depend on the fiscal policy instrument

• Carbon taxes induce inflation and output losses

Costs of transition depend on the fiscal policy instrument

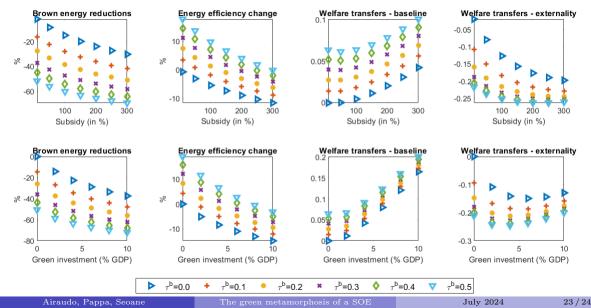
- Carbon taxes induce inflation and output losses
- Public investment/subsidies are deflationary and have no output cost. However, they generate losses in terms of energy efficiency and high fiscal costs

Costs of transition depend on the fiscal policy instrument

- **Carbon taxes** induce inflation and output losses
- Public investment/subsidies are deflationary and have no output cost. However, they generate losses in terms of energy efficiency and high fiscal costs
- Monetary policy can moderate greenflation, output costs remain high and fiscal costs increase MP

Costs of transition depend on the fiscal policy instrument

- Carbon taxes induce inflation and output losses
- Public investment/subsidies are deflationary and have no output cost. However, they generate losses in terms of energy efficiency and high fiscal costs
- Monetary policy can moderate greenflation, output costs remain high and fiscal costs increase MP
- Policy mix: combining carbon taxes with other fiscal instrument can alleviate the unintended consequences mix


- We study welfare as consumption equivalence from the initial steady state
- Carbon tax is the best policy in terms of welfare
- The green transition implies welfare losses in the baseline model (more)

Policy mix

Alternative combination of policies

- Public opposition to carbon taxation (see Carattini et al. (2018))
- Combine lower increase in carbon taxes with the other two fiscal instruments
 - \blacksquare Increase in taxation from 5 to 25% and increase in green subsidies from 0 to 40%
 - Increase in taxation from 5 to 15% and increase in green public investment from 0 to 2.8% of GDP
- Both policies reduce inflationary/output and fiscal costs of transition
- Welfare improvements through a policy mix

Different policy mix and welfare more

Some concluding remarks

- Increases in **carbon taxes** decrease the usage of brown energy but do not significantly expand the green sector. They improve energy efficiency use, surging firms' marginal costs, leading to greenflation and output losses.
- Public investment/subsidies avoid inflation and recession. However, they generate losses in terms of energy efficiency and high fiscal costs.
- Policy combination of carbon tax increases and green subsidies or public green investment can alleviate the unintended consequences.
- Monetary policy can shape greenflation in the short run at the cost of higher fiscal stress.

The End

Thank you!

Motivation (back

Low fiscal incentives to adopt greener technology

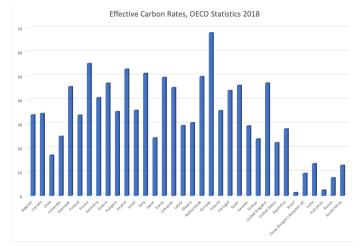


Figure 1: Carbon Pricing Score, (wrt 60 euros per metric ton of CO2-equivalent).

Airaudo, Pappa, Seoane

The green metamorphosis of a SOE

Welfare as consumption equivalence from initial steady state:

$$\sum_{t=1}^{T} \beta^{t} log\left(c_{0}\right) = \sum_{t=1}^{T} \beta^{t} log\left(c_{t,k} + \Lambda_{k}\right)$$

where \tilde{c}_t is the detrended value of consumption \bigcirc

$$c_t = \tilde{c}_t X_{t-1}$$

and k is the scenario under study

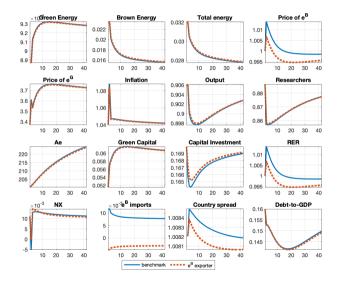
Welfare as consumption equivalence from initial steady state:

$$\sum_{t=1}^{T} \beta^{t} log\left(c_{0}\right) = \sum_{t=1}^{T} \beta^{t} log\left(c_{t,k} + \Lambda_{k}\right)$$

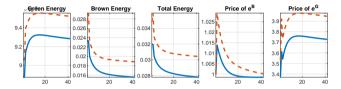
where \tilde{c}_t is the detrended value of consumption \bigcirc

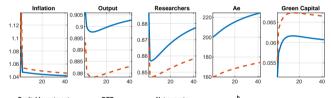
$$c_t = \tilde{c}_t X_{t-1}$$

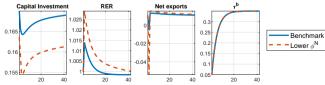
and k is the scenario under study


Externality scenario

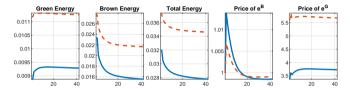
$$\hat{c}_t = c_t - \tilde{\gamma}(e_t^B)^2$$

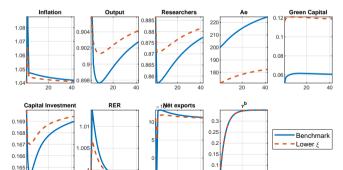

Calibrate $\tilde{\gamma}$ to get damages as 5% and 20% of GDP.


	No externality	Low Externality e^B	High Externality e^B
Carbon Tax	0.041	-0.023	-0.179
Green Subsidy	0.042	-0.023	-0.198
Public Investment	0.101	0.034	-0.148


The case of a brown energy exporter **back**

The role of supply frictions (back)





Airaudo, Pappa, Seoane

The role of substitutability between energy inputs (back)

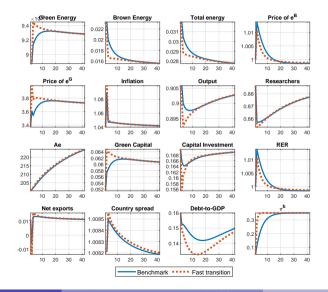
Airaudo, Pappa, Seoane

20

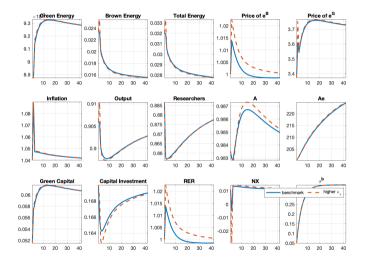
40

20 40

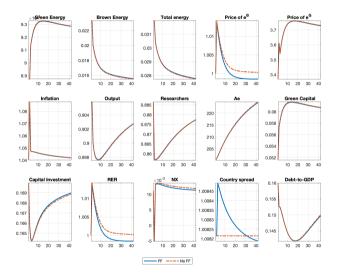
20

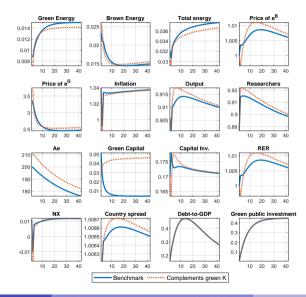

0.05

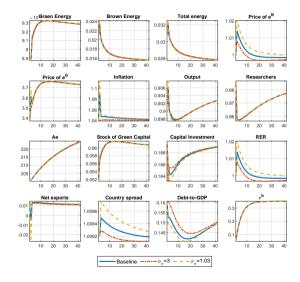
40

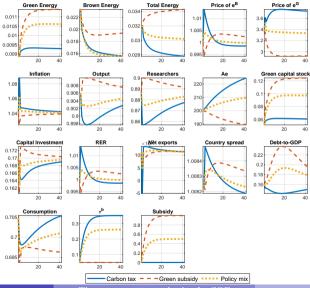

20

4N

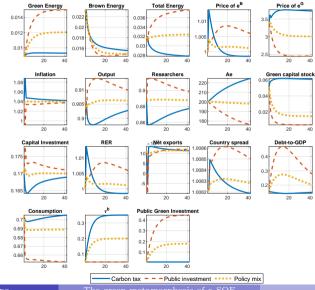

The speed of transition (back)


Sensitivity: Stickier Prices (back)


Sensitivity: Financial Frictions (back)


Public and private green capital complementarity (back)

The role of monetary policy (back)


Policy mix brown taxes and green subsidies (back)

Airaudo, Pappa, Seoane

The green metamorphosis of a SOE

Policy mix brown taxes and green investment war

Airaudo, Pappa, Seoane

The green metamorphosis of a SOE

The whole transition path 200 years (back)

Airaudo, Pappa, Seoane

Welfare comparisons (back)

- \bullet Increase in carbon taxes from 5% to 35%
- \bullet Increase in Green Public Infrastructure by 7% of GDP
- \bullet Policy mix 1: Increase in carbon taxes from 5% to 25% by 7% and subsidies from zero to 40%
- \bullet Policy mix 2: Increase in carbon taxes from 5% to 15% by 7% and public investment from zero to 2.8% of GDP

Table 1:	Welfare	Comparisons	
----------	---------	-------------	--

	No externality	Low Externality e^B	High Externality e^B
Carbon Tax	0.041	-0.023	-0.179
Green Subsidy 300%	0.042	-0.023	-0.198
Public Infrastructure	0.101	0.034	-0.148
Carbon Tax-Sub Mix	0.028	-0.036	-0.194
Carbon Tax-IG Mix	0.040	-0.027	-0.194