Capital Flows and Exchange Rates

A Quantitative Assessment of the Dilemma Hypothesis*

Ambrogio Cesa-Bianchi

Andrea Ferrero

Bank of England

University of Oxford

Shangshang Li

University of Liverpool

Qatar Centre for Global Banking & Finance Annual Conference

London, 1 July 2024

*The views expressed in this paper do not necessarily represent those of the Bank of England or any of its Committees.

Question and Motivation

- Monetary policy tightening cycle in advanced economies
 - ► Renewed interest on cross-country transmission of monetary policy (shocks)

- Monetary policy tightening cycle in advanced economies
 - Renewed interest on cross-country transmission of monetary policy (shocks)
- Global Financial Cycle (Rey, 2013) \rightarrow From Trilemma to Dilemma?
 - Does a flexible exchange rate regime provide enough insulation?
 - Are additional instruments necessary for domestic monetary policy independence?

- Monetary policy tightening cycle in advanced economies
 - Renewed interest on cross-country transmission of monetary policy (shocks)
- Global Financial Cycle (Rey, 2013) \rightarrow From Trilemma to Dilemma?
 - Does a flexible exchange rate regime provide enough insulation?
 - Are additional instruments necessary for domestic monetary policy independence?
- ullet Our contribution o Revisit these questions in an estimated open economy DSGE model
 - Dominant currency paradigm in finance and trade
 - Consistent with Global Financial Cycle evidence

Introduction

What We Do and What We Find

- 1. <u>Panel VAR</u> \rightarrow Response of financial and macro variables to US monetary policy shock
 - Typical (small) open economy with flexible exchange rates
 - Demand/financial channel dominates over expenditure-switching effect

Introduction

What We Do and What We Find

- 1. <u>Panel VAR</u> \rightarrow Response of financial and macro variables to US monetary policy shock
 - Typical (small) open economy with flexible exchange rates
 - Demand/financial channel dominates over expenditure-switching effect
- 2. <u>Two-country DSGE model</u> \rightarrow Estimated to match VAR impulse responses
 - Frictions in international financial intermediation and pricing
 - Necessary to replicate empirical evidence

Introduction

What We Do and What We Find

- 1. <u>Panel VAR</u> \rightarrow Response of financial and macro variables to US monetary policy shock
 - Typical (small) open economy with flexible exchange rates
 - Demand/financial channel dominates over expenditure-switching effect
- 2. <u>Two-country DSGE model</u> \rightarrow Estimated to match VAR impulse responses
 - Frictions in international financial intermediation and pricing
 - Necessary to replicate empirical evidence
- 3. Policy analysis \rightarrow Counterfactuals
 - Exchange rate targeting increases domestic macroeconomic volatility
 - Additional instruments (tax on capital flow / domestic credit) mitigate consequences of GFC
 - Taxes can limit volatility of economic activity under peg but with disinflationary side effect

Related Literature

• Empirical studies of global financial cycle and its drivers

Rey (2013); Dedola, Rivolta and Stracca (2017); Cesa-Bianchi, Ferrero and Rebucci (2018); Cerutti, Claessens and Rose (2019); Corman and Lloyd (2019); Obstfeld, Ostry and Qureshi (2019); Miranda-Agrippino and Rey (2020); Degasperi, Hong and Ricco (2021); Ilzetzki and Jin (2021); Georgiadis, Muller, Schumann (2023a,b), Georgiadis and Jarocinski (2023)

• Financial frictions in open economy

Farhi and Werning (2014); Gabaix and Maggiori (2015); Aoki, Benigno and Kiyotaki (2020); Gourinchas (2020); Adrian et al. (2020); Casas et al. (2020); Corsetti, Dedola, and Leduc (2020); Itskhoki and Mukhin (2021); Akinci and Queralto (2024); Camara, Christiano and Dalgic (2024)

• LCP and dominant currency paradigm

Devereux and Engel (2003); Cook and Devereux (2006); Corsetti, Dedola and Leduc (2010); Engel (2011); Fujiwara and Wang (2017); Gopinath et al. (2020); Chen et al. (2021); Gopinath and Stein (2021)

1. Panel VAR

Panel VAR	Two-Country DSGE Model	

Data

- Panel of macro-financial variables for **15 countries with flexible exchange rate**
 - Australia, Canada, Chile, Germany, Japan, Korea, Mexico, New Zealand, Norway, Singapore, South Africa, Sweden, Switzerland, Thailand, United Kingdom
 - Robustness with a larger set of countries (24)

ntroduction	Panel VAR	Two-Country DSGE Model	Policy Analysis	Appendix

Data

- Panel of macro-financial variables for 15 countries with flexible exchange rate
 - Australia, Canada, Chile, Germany, Japan, Korea, Mexico, New Zealand, Norway, Singapore, South Africa, Sweden, Switzerland, Thailand, United Kingdom
 - Robustness with a larger set of countries (24)
- Variables
 - **US:** Monetary policy surprise, excess bond premium, real GDP
 - > Domestic: Real GDP, CPI, exports, nominal interest rate, nominal FX (LC per USD), corporate spread

	Panel VAR	Two-Country DSGE Model	
-			

Data

- Panel of macro-financial variables for 15 countries with flexible exchange rate
 - Australia, Canada, Chile, Germany, Japan, Korea, Mexico, New Zealand, Norway, Singapore, South Africa, Sweden, Switzerland, Thailand, United Kingdom
 - Robustness with a larger set of countries (24)
- Variables
 - **US:** Monetary policy surprise, excess bond premium, real GDP
 - > Domestic: Real GDP, CPI, exports, nominal interest rate, nominal FX (LC per USD), corporate spread
- Monthly frequency \rightarrow 1997:M1–2019:M12 (subject to availability)
 - Corporate spreads constrain earlier starting date (robustness from 1985 without spreads)
 - Macro series interpolated from quarterly to monthly frequency (Miranda-Agrippino and Rey, 2020)

Introduction	Panel VAR	Two-Country DSGE Model	Policy Analysis	Appendix
Panel VA	R			
Internal	instrument (Plagbo	org-Moeller and Wolf, 2021)		
		$x_{it} = a_i + b_i t + \sum_{p=1}^{P} F_{i,p} x_{i,t-p}$	$v + u_{it}$	

where

$$x_{it} = \begin{bmatrix} \epsilon_{mt}^{US} & EBP_t^{US} & Y_t^{US} & Y_{it} & EX_{it} & CPI_{it} & i_{it} & FX_{it} & CS_{it} \end{bmatrix}$$

Introduction	Panel VAR	Two-Country DSGE Model	Policy Analysis	Appendix
Panel VAR				

• Internal instrument (Plagborg-Moeller and Wolf, 2021)

$$x_{it} = a_i + b_i t + \sum_{p=1}^{P} F_{i,p} x_{i,t-p} + u_{it}$$

where

$$x_{it} = \begin{bmatrix} \epsilon_{mt}^{US} & EBP_t^{US} & Y_t^{US} & Y_{it} & EX_{it} & CPI_{it} & i_{it} & FX_{it} & CS_{it} \end{bmatrix}$$

• $\epsilon_{mt}^{US} ightarrow$ Monetary policy surprises from Jarocinski and Karadi (2020)

Introduction	Panel VAR	Two-Country DSGE Model	Policy Analysis	Appendix
Panel VAR				

• Internal instrument (Plagborg-Moeller and Wolf, 2021)

$$x_{it} = a_i + b_i t + \sum_{p=1}^{P} F_{i,p} x_{i,t-p} + u_{it}$$

where

$$x_{it} = \begin{bmatrix} e_{mt}^{US} & EBP_t^{US} & Y_t^{US} & Y_{it} & EX_{it} & CPI_{it} & i_{it} & FX_{it} & CS_{it} \end{bmatrix}$$

• ϵ_{mt}^{US} \rightarrow Monetary policy surprises from Jarocinski and Karadi (2020)

- ullet Empirical model o Dynamic panel with heterogeneous slope coefficients
 - Set P = 4 (robustness with 3 lags)
 - Mean group estimator (Pesaran and Smith, 1995; Pesaran, 2006)
 - ★ Estimate country-by-country VARs with OLS

Cesa-Bianchi (BoE), Ferrero (Oxford) and Li (Liverpool)

Capital Flows and Exchange Rates

8/44

Cesa-Bianchi (BoE), Ferrero (Oxford) and Li (Liverpool)

8/44

Cesa-Bianchi (BoE), Ferrero (Oxford) and Li (Liverpool)

Capital Flows and Exchange Rates

Cesa-Bianchi (BoE), Ferrero (Oxford) and Li (Liverpool)

Capital Flows and Exchange Rates

8/44

Capital Flows and Exchange Rates

2. Two-Country DSGE Model

	Two-Country DSGE Model	
Overview		

• Similar to Aoki, Benigno and Kiyotaki (2020) and Akinci and Queralto (2022)

Introduction	Panel VAR	Two-Country DSGE Model	Policy Analysis	Appendix
Overview				

- Similar to Aoki, Benigno and Kiyotaki (2020) and Akinci and Queralto (2022)
- Standard household sector symmetric across two countries (H small and F large)

Introduction	Panel VAR	Two-Country DSGE Model	Policy Analysis	Appendix
Overview				

- Similar to Aoki, Benigno and Kiyotaki (2020) and Akinci and Queralto (2022)
- Standard household sector symmetric across two countries (H small and F large)
- Asymmetric international financial structure
 - Foreign banks raise funds domestically, lend both domestically and internationally
 - Home banks raise funds domestically and internationally, lend only domestically

Introduction	Panel VAR	Two-Country DSGE Model	Policy Analysis	Appendix
Overview				

- Similar to Aoki, Benigno and Kiyotaki (2020) and Akinci and Queralto (2022)
- Standard household sector symmetric across two countries (H small and F large)
- Asymmetric international financial structure
 - Foreign banks raise funds domestically, lend both domestically and internationally
 - Home banks raise funds domestically and internationally, lend only domestically
- Multi-layer production (capital producers, importers, wholesale producers, retailers)
 - Home exporters price in Foreign currency (LCP)
 - Imperfect pass-through for Home import pricess

Introduction	Panel VAR	Two-Country DSGE Model	Policy Analysis	Appendix
Overview				

- Similar to Aoki, Benigno and Kiyotaki (2020) and Akinci and Queralto (2022)
- Standard household sector symmetric across two countries (H small and F large)
- Asymmetric international financial structure
 - ► Foreign banks raise funds domestically, lend both domestically and internationally
 - Home banks raise funds domestically and internationally, lend only domestically
- Multi-layer production (capital producers, importers, wholesale producers, retailers)
 - Home exporters price in Foreign currency (LCP)
 - Imperfect pass-through for Home import pricess
- Dominant currency paradigm in international goods and financial markets

Financial Frictions

- Foreign banks \rightarrow Standard (Gertler and Karadi, 2011), balance sheet fully in USD
 - ► Issue deposits to *F* households, lend to *F* firms and *H* banks

Financial Frictions

- Foreign banks \rightarrow Standard (Gertler and Karadi, 2011), balance sheet fully in USD
 - ▶ Issue deposits to *F* households, lend to *F* firms and *H* banks
- Home banks \rightarrow Balance sheet currency mis-match

$$\underbrace{q_t z_t}_{\text{Assets}} = \underbrace{d_t + s_t b_t^* + n_t}_{\text{Liabilities}}$$

Can divert fraction of assets

$$\Theta(x_t) = \theta\left(1 + \frac{\gamma}{2}x_t^2\right)$$

with $\gamma > 0$, where $x_t = s_t b_t^* / (q_t z_t)$ (foreign funds harder to recover than domestic funds)

• Gives rise to **endogenous UIP wedge**

Introduction	Panel VAR	Two-Country DSGE Model	Policy Analysis	Appendix
Policy				

● Baseline → Monetary policy rule

$$\frac{R_t}{R} = \left(\frac{R_{t-1}}{R}\right)^{\rho_R} \left[\Pi_t^{\phi_\pi} \left(\frac{y_t}{y_{t-1}}\right)^{\phi_y} \left(\frac{\mathcal{E}_t}{\mathcal{E}_{t-1}}\right)^{\phi_\mathcal{E}} \right]^{1-\rho_R},$$

- **Home** ightarrow Estimate $\phi_{\mathcal{E}}$ (check exchange rate flexibility)
- **Foreign** $\rightarrow \phi_{\mathcal{E}} = 0$ (impose flexible exchange rate)

Introduction	Panel VAR	Two-Country DSGE Model	Policy Analysis	Appendix
Policy				

• Baseline \rightarrow Monetary policy rule

$$\frac{R_t}{R} = \left(\frac{R_{t-1}}{R}\right)^{\rho_R} \left[\Pi_t^{\phi_\pi} \left(\frac{y_t}{y_{t-1}}\right)^{\phi_y} \left(\frac{\mathcal{E}_t}{\mathcal{E}_{t-1}}\right)^{\phi_\mathcal{E}} \right]^{1-\rho_R},$$

- ▶ Home \rightarrow Estimate $\phi_{\mathcal{E}}$ (check exchange rate flexibility)
- Foreign $ightarrow \phi_{\mathcal{E}} = 0$ (impose flexible exchange rate)
- Policy experiments (later) \rightarrow In Home country
 - Stronger response to exchange rate
 - Taxes on
 - ★ Domestic credit (macro-prudential tool)
 - * Foreign liabilities (capital flows management tool)

Impulse Response Matching

Cesa-Bianchi (BoE), Ferrero (Oxford) and Li (Liverpool)

Capital Flows and Exchange Rates

The Role of Financial Frictions

Cesa-Bianchi (BoE), Ferrero (Oxford) and Li (Liverpool)

Capital Flows and Exchange Rates

	Two-Country DSGE Model	

The Role of LCP

The Role of Imperfect Pass-Through

3. Policy Analysis

Exchange Rate Flexibility

• Exchange rate regime not irrelevant

► Macroeconomic volatility increasing with weight on exchange rate in monetary policy rule

Peg + Tax on Domestic Credit

- Taxes on domestic credit or foreign borrowing dampens effects of GFC
 - ▶ Both instruments can also alleviate (but not eliminate) negative consequences of peg

---Baseline - - Currency Peg ----- Currency Peg with Tax on Domestic Credit

ntroduction	Panel VAR	Two-Country DSGE Model	Policy Analysis	Appendix
Conclus	ions			
1 Deve - 1)/			1-	

- 1. Panel VAR \rightarrow Consistent with idea of Global Financial Cycle
 - Contractionary US monetary policy shock leads to domestic recession
 - Despite domestic currency depreciation (expenditure-switching effect does not dominate)
- 2. Estimated two-country DSGE \rightarrow Can match empirical evidence
 - Key role of financial frictions in banking sector and pricing frictions in international trade
- 3. Policy analysis
 - Peg exacerbates macroeconomic volatility (exchange rate regime not irrelevant)
 - ► Taxes on domestic credit or foreign borrowing reduce consequences of GFC
 - Both taxes can limit negative effects of peg on GDP but not on inflation

A1: Panel VAR

- High frequency surprises s_t^i possibly contaminated by monetary policy "signalling" component
 - Potential bias in estimated effect of monetary policy shocks
- Decompose s_t^i into monetary (ϵ_t^m) and non-monetary (ϵ_t^{other}) shocks
 - Simple sign restriction approach (Jarocinski and Karadi, 2020)

	Monetary (ϵ_t^m)	Non-monetary (ϵ_t^{other})
Equity surprises (s_t^{eq})	_	+
Interest rate surprises (s_t^i)	+	+

VAR Robustness: Larger Sample (24 countries)

Cesa-Bianchi (BoE), Ferrero (Oxford) and Li (Liverpool)

Capital Flows and Exchange Rates

26/44

VAR Robustness: No Trend

VAR Robustness: Longer Sample (1985-2019, no spreads)

Capital Flows and Exchange Rates

VAR Robustness: Short-Term Market Interest Rates

VAR Robustness: Alternative Lag Length (3 lags)

Capital Flows and Exchange Rates

VAR Robustness: Adding US Inflation

VAR Robustness: Adding Oil Prices

VAR Robustness: Adding SOE Equity Prices

A2: DSGE Model

Introduction	Panel VAR	Two-Country DSGE Model	Policy Analysis	Appendix
Home Banks				
• Choose loans (z_t), deposits (d_t) and	l interbank borrowing (b_t^st) to	solve	

$$V(n_t) = \max \mathbb{E}_t \left\{ \mathcal{M}_{t,t+1}[(1-\omega)n_{t+1} + \omega V(n_{t+1})] \right\}$$

subject to

$$q_t z_t = d_t + s_t b_t^* + n_t$$

$$V(n_t) \geq \Theta(x_t)q_t z_t$$

$$n_t = r_{Kt}q_{t-1}z_{t-1} - \frac{R_{t-1}}{\Pi_t}d_{t-1} - \frac{R_{Bt-1}^*}{\Pi_t^*}s_t b_{t-1}^*$$

where

$$\Theta(x_t) = \theta\left(1 + \frac{\gamma}{2}x_t^2\right)$$

and $x_t = s_t b_t^* / (q_t z_t)$

Solution of Local Banks' Problem

• All bankers choose same leverage and same ratio of foreign liabilities (binding ICC)

Solution of Local Banks' Problem

- All bankers choose same leverage and same ratio of foreign liabilities (binding ICC)
- Optimal portfolio allocation

$$\frac{\mu_{Kt}}{\mu_{Bt}} = \frac{\Theta(x_t)}{\Theta'(x_t)} - x_t$$

- ▶ μ_{Kt} → Discounted excess return of capital on deposits
- ▶ μ_{Bt} → Discounted excess return of deposits on interbank borrowing

Solution of Local Banks' Problem

- All bankers choose same leverage and same ratio of foreign liabilities (binding ICC)
- Optimal portfolio allocation

$$\frac{\mu_{Kt}}{\mu_{Bt}} = \frac{\Theta(x_t)}{\Theta'(x_t)} - x_t$$

- ► μ_{Kt} → Discounted excess return of capital on deposits
- ▶ μ_{Bt} → Discounted excess return of deposits on interbank borrowing
- Incentive compatibility constraint at equality

$$\phi_t = \frac{\mu_{Dt}}{\Theta(x_t) - (\mu_{Kt} + \mu_{Bt} x_t)}$$

► μ_{Dt} → Discounted return of deposits

Introduction	Panel VAR	Two-Country DSGE Model	Policy Analysis	Appendix
UIP Wedge				

• Without financial frictions, UIP would hold

$$1 = \mathbb{E}_t \left[\mathcal{M}_{t,t+1} \Omega_{t+1} \left(\frac{R_t}{\Pi_{t+1}} - \frac{R_{Bt}^*}{\Pi_{t+1}^*} \frac{s_{t+1}}{s_t} \right) \right]$$

Introduction	Panel VAR	Two-Country DSGE Model	Policy Analysis	Appendix
UIP Wedge				

• Without financial frictions, UIP would hold

$$1 = \mathbb{E}_t \left[\mathcal{M}_{t,t+1} \Omega_{t+1} \left(\frac{R_t}{\Pi_{t+1}} - \frac{R_{Bt}^*}{\Pi_{t+1}^*} \frac{s_{t+1}}{s_t} \right) \right]$$

• Financial frictions create wedge between domestic and foreign interest rate

$$\mu_{Bt} = \mathbb{E}_t \left[\mathcal{M}_{t,t+1} \Omega_{t+1} \left(\frac{R_t}{\Pi_{t+1}} - \frac{R_{Bt}^*}{\Pi_{t+1}^*} \frac{s_{t+1}}{s_t} \right) \right]$$

- Foreign funds harder to recover
- Domestic currency must pay a premium relative to foreign currency

Introduction	Panel VAR	Two-Country DSGE Model	Policy Analysis	Appendix

Calibrated Parameters

Parameter	Description	Home	Foreign
п	Relative size of country <i>H</i>	0.1	0.9
β	Individual discount factor	0.9926	0.9975
ĥ	Habits in consumption	-	0.71
σ	Relative risk aversion	-	1.38
ζ	Inverse Frisch elasticity	1	1
Q	Elasticity of substitution among goods varieties	6	6
а	Home bias in consumption	0.66	0.96
ϵ	Elasticity of substitution between <i>H</i> and <i>F</i> goods	1.5	1.5
ν	Elasticity of substitution among labor varieties	6	6
ξw	Wage rigidity	0.66	0.66
ξp	Price rigidity	-	0.66
α	Capital share	0.33	0.33
δ	Depreciation rate	0.025	0.025
φ_i	Investment adjustment cost	-	5.74
ω	Bank survival rate	0.97	0.97
θ	Proportion of divertible funds	-	0.51
ξь	Bank transfer rate	-	0.002

	Two-Country DSGE Model	Appendix

Estimated Parameters

Parameter	Р	Prior				Poste	rior	
	Distribution	Mean	SD		Mode	Median	5%	95%
h	Beta	0.650	0.1		0.715	0.709	0.558	0.841
σ	Gamma	1	0.375		1.126	1.260	0.765	1.811
λ	Gamma	5	1		4.727	4.831	3.429	6.293
x	Beta	0.240	0.15		0.110	0.168	0.022	0.323
φ_i	Gamma	2.850	2		0.589	0.726	0.167	1.596
ξp	Beta	0.660	0.15		0.833	0.777	0.544	0.957
ξim	Beta	0.660	0.15		0.697	0.665	0.410	0.873
$ ho_R$	Beta	0.750	0.1		0.769	0.769	0.603	0.913
ϕ_π	Gamma	1.500	0.25		1.485	1.518	1.158	1.881
ϕ_y	Gamma	0.125	0.05		0.110	0.120	0.047	0.202
$\phi_{\mathcal{E}}$	Gamma	0.100	0.05		0.074	0.093	0.022	0.168
$ ho_R^*$	Beta	0.750	0.1		0.798	0.742	0.613	0.853
ϕ^*_π	Gamma	1.500	0.25		1.466	1.518	1.162	1.900
ϕ_{v}^{*}	Gamma	0.125	0.05		0.107	0.119	0.044	0.204

Introduction	Panel VAR	Two-Country DSGE Model	Policy Analysis	Appendix
"Macro-l	Prudential" To	ol		
• Tax on o	domestic credit			
	$n_t = (1 - $	$\tau_t^k)r_{kt}-q_{t-1}z_{t-1}-\frac{R_{t-1}d_t}{\Pi_t}$	$rac{-1}{1} - rac{R^*_{bt-1}}{\Pi^*_t} s_t b^*_{t-1}$	
► Dire	ctly impacts credit sprea	ads		
	$\mu_{kt} =$	$= \mathbb{E}_t \left\{ \mathcal{M}_{t,t+1} \Omega_{t,t+1} \left[(1 - \tau_{t+1}^k) \right] \right\}$	$\left r_{kt+1} - \frac{R_t}{\Pi_{t+1}} \right $	

• Policy rule (Borio and Lowe, 2002)

$$\tau_t^k = \phi_k \ln\left(\frac{q_t z_t}{qz}\right)$$

Tax on Domestic Credit

• Significantly reduces GDP volatility by compressing credit spreads

"Capital-Flow Management" Tool

• Tax on foreign borrowing

$$n_{t} = r_{kt}q_{t-1}z_{t-1} - \frac{R_{t-1}d_{t-1}}{\Pi_{t}} - (1 + \tau_{t}^{b})\frac{R_{bt-1}^{*}}{\Pi_{t}^{*}}s_{t}b_{t-1}^{*}$$

Directly impacts UIP wedge

$$\mu_{bt} = \mathbb{E}_t \left\{ \mathcal{M}_{t,t+1} \Omega_{t,t+1} \left[\frac{R_{t+1}}{\Pi_{t+1}} - (1 + \tau_{t+1}^b) \frac{R_{bt}^*}{\Pi_{t+1}^*} \frac{s_{t+1}}{s_t} \right] \right\}$$

• Policy rule

$$\tau_t^b = \phi_b \ln\left(\frac{q_t z_t}{qz}\right)$$

Appendix

Tax on Foreign Borrowing

• Similar effects to those of tax on total credit but acts on UIP wedge

Macroeconomic Volatility

• Standard deviation of real GDP and inflation across policy regimes

	Standard deviations (in %)	
Regime	Real GDP	Inflation
Fully flexible exchange rate	0.24	0.01
Baseline	0.28	0.01
Baseline + tax on domestic credit	0.02	0.01
Baseline + tax on foreign borrowing	0.09	0.01
Peg	8.52	0.17
Peg + tax on domestic credit	0.35	0.26
Peg + tax on foreign borrowing	0.69	0.13

Appendix